Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing

被引:829
作者
Poland, Jesse [1 ,2 ]
Endelman, Jeffrey [3 ]
Dawson, Julie [4 ]
Rutkoski, Jessica [4 ]
Wu, Shuangye [2 ]
Manes, Yann [5 ]
Dreisigacker, Susanne [5 ]
Crossa, Jose [5 ]
Sanchez-Villeda, Hector [5 ]
Sorrells, Mark [4 ]
Jannink, Jean-Luc [3 ]
机构
[1] Kansas State Univ, USDA ARS, Manhattan, KS 66506 USA
[2] Kansas State Univ, Dep Agron, Manhattan, KS 66506 USA
[3] Cornell Univ, USDA ARS, RW Holley Ctr, Ithaca, NY 14853 USA
[4] Cornell Univ, Dep Plant Breeding & Genet, Ithaca, NY 14853 USA
[5] Int Maize & Wheat Improvement Ctr CIMMYT, Mexico City 06600, DF, Mexico
基金
比尔及梅琳达.盖茨基金会; 美国农业部;
关键词
ARRAYS TECHNOLOGY DART; QUANTITATIVE TRAITS; GENETIC VALUES; PREDICTION; REGRESSION; PEDIGREE;
D O I
10.3835/plantgenome2012.06.0006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genomic selection (GS) uses genomewide molecular markers to predict breeding values and make selections of individuals or breeding lines prior to phenotyping. Here we show that genotyping-by-sequencing (GBS) can be used for de novo genotyping of breeding panels and to develop accurate GS models, even for the large, complex, and polyploid wheat (Triticum aestivum L.) genome. With GBS we discovered 41,371 single nucleotide polymorphisms (SNPs) in a set of 254 advanced breeding lines from CIMMYT's semiarid wheat breeding program. Four different methods were evaluated for imputing missing marker scores in this set of unmapped markers, including random forest regression and a newly developed multivariate-normal expectation-maximization algorithm, which gave more accurate imputation than heterozygous or mean imputation at the marker level, although no significant differences were observed in the accuracy of genomic-estimated breeding values (GEBVs) among imputation methods. Genomic-estimated breeding value prediction accuracies with GBS were 0.28 to 0.45 for grain yield, an improvement of 0.1 to 0.2 over an established marker platform for wheat. Genotyping-by-sequencing combines marker discovery and genotyping of large populations, making it an excellent marker platform for breeding applications even in the absence of a reference genome sequence or previous polymorphism discovery. In addition, the flexibility and low cost of GBS make this an ideal approach for genomics-assisted breeding.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 30 条
  • [1] Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome
    Akbari, Mona
    Wenzl, Peter
    Caig, Vanessa
    Carling, Jason
    Xia, Ling
    Yang, Shiying
    Uszynski, Grzegorz
    Mohler, Volker
    Lehmensiek, Anke
    Kuchel, Haydn
    Hayden, Mathew J.
    Howes, Neil
    Sharp, Peter
    Vaughan, Peter
    Rathmell, Bill
    Huttner, Eric
    Kilian, Andrzej
    [J]. THEORETICAL AND APPLIED GENETICS, 2006, 113 (08) : 1409 - 1420
  • [2] [Anonymous], 2010, SAS SYSTEM WINDOWS R
  • [3] Arumuganathan K., 1991, Plant Mol Biol Rep, V9, P208, DOI [10.1007/BF02672069, DOI 10.1007/BF02672069]
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Genomic Prediction of Breeding Values when Modeling Genotype x Environment Interaction using Pedigree and Dense Molecular Markers
    Burgueno, Juan
    de los Campos, Gustavo
    Weigel, Kent
    Crossa, Jose
    [J]. CROP SCIENCE, 2012, 52 (02) : 707 - 719
  • [6] CIMMYT, 2005, Laboratory protocols: CIMMYT applied molecular genetics laboratory, V3
  • [7] Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers
    Crossa, Jose
    de los Campos, Gustavo
    Perez, Paulino
    Gianola, Daniel
    Burgueno, Juan
    Luis Araus, Jose
    Makumbi, Dan
    Singh, Ravi P.
    Dreisigacker, Susanne
    Yan, Jianbing
    Arief, Vivi
    Banziger, Marianne
    Braun, Hans-Joachim
    [J]. GENETICS, 2010, 186 (02) : 713 - U406
  • [8] Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree
    de los Campos, Gustavo
    Naya, Hugo
    Gianola, Daniel
    Crossa, Jose
    Legarra, Andres
    Manfredi, Eduardo
    Weigel, Kent
    Cotes, Jose Miguel
    [J]. GENETICS, 2009, 182 (01) : 375 - 385
  • [9] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [10] A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species
    Elshire, Robert J.
    Glaubitz, Jeffrey C.
    Sun, Qi
    Poland, Jesse A.
    Kawamoto, Ken
    Buckler, Edward S.
    Mitchell, Sharon E.
    [J]. PLOS ONE, 2011, 6 (05):