Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators

被引:234
作者
Kay, J. E. [1 ]
Hillman, B. R. [2 ,3 ]
Klein, S. A. [4 ]
Zhang, Y. [4 ]
Medeiros, B. [1 ]
Pincus, R. [5 ,6 ]
Gettelman, A. [1 ]
Eaton, B. [1 ]
Boyle, J. [4 ]
Marchand, R. [2 ]
Ackerman, T. P. [2 ,3 ]
机构
[1] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA
[2] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
[3] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA
[4] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA
[5] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA
[6] Univ Colorado, Boulder, CO 80309 USA
关键词
CLIMATE SENSITIVITY; ECMWF; PARAMETERIZATION; CONVECTION; IMPACT; ISCCP; NCAR; PACIFIC; MODIS;
D O I
10.1175/JCLI-D-11-00469.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Satellite observations and their corresponding instrument simulators are used to document global cloud biases in the Community Atmosphere Model (CAM) versions 4 and 5. The model observation comparisons show that, despite having nearly identical cloud radiative forcing, CAMS has a much more realistic representation of cloud properties than CAM4. In particular, CAM5 exhibits substantial improvement in three long-standing climate model cloud biases: 1) the underestimation of total cloud, 2) the overestimation of optically thick cloud, and 3) the underestimation of midlevel cloud. While the increased total cloud and decreased optically thick cloud in CAM5 result from improved physical process representation, the increased midlevel cloud in CAM5 results from the addition of radiatively active snow. Despite these improvements, both CAM versions have cloud deficiencies. Of particular concern, both models exhibit large but differing biases in the subtropical marine boundary layer cloud regimes that are known to explain intermodel differences in cloud feedbacks and climate sensitivity. More generally, this study demonstrates that simulator-facilitated evaluation of cloud properties, such as amount by vertical level and optical depth, can robustly expose large and at times radiatively compensating climate model cloud biases.
引用
收藏
页码:5190 / 5207
页数:18
相关论文
共 75 条
  • [1] [Anonymous], 2011, Clivar Exch
  • [2] [Anonymous], NCARTN485STR
  • [3] COSP Satellite simulation software for model assessment
    Bodas-Salcedo, A.
    Webb, M. J.
    Bony, S.
    Chepfer, H.
    Dufresne, J. -L.
    Klein, S. A.
    Zhang, Y.
    Marchand, R.
    Haynes, J. M.
    Pincus, R.
    John, V. O.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2011, 92 (08) : 1023 - 1043
  • [4] Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities
    Bodas-Salcedo, A.
    Webb, M. J.
    Brooks, M. E.
    Ringer, M. A.
    Williams, K. D.
    Milton, S. F.
    Wilson, D. R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113
  • [5] Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models
    Bony, S
    Dufresne, JL
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (20) : 1 - 4
  • [6] A New Moist Turbulence Parameterization in the Community Atmosphere Model
    Bretherton, Christopher S.
    Park, Sungsu
    [J]. JOURNAL OF CLIMATE, 2009, 22 (12) : 3422 - 3448
  • [7] INTERCOMPARISON AND INTERPRETATION OF CLIMATE FEEDBACK PROCESSES IN 19 ATMOSPHERIC GENERAL-CIRCULATION MODELS
    CESS, RD
    POTTER, GL
    BLANCHET, JP
    BOER, GJ
    DELGENIO, AD
    DEQUE, M
    DYMNIKOV, V
    GALIN, V
    GATES, WL
    GHAN, SJ
    KIEHL, JT
    LACIS, AA
    LETREUT, H
    LI, ZX
    LIANG, XZ
    MCAVANEY, BJ
    MELESHKO, VP
    MITCHELL, JFB
    MORCRETTE, JJ
    RANDALL, DA
    RIKUS, L
    ROECKNER, E
    ROYER, JF
    SCHLESE, U
    SHEININ, DA
    SLINGO, A
    SOKOLOV, AP
    TAYLOR, KE
    WASHINGTON, WM
    WETHERALD, RT
    YAGAI, I
    ZHANG, MH
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D10) : 16601 - 16615
  • [8] The characteristics of key analysis errors. Part III: a diagnosis of their evolution
    Caron, Jean-Francois
    Yau, M. K.
    Laroche, Stephane
    [J]. MONTHLY WEATHER REVIEW, 2007, 135 (07) : 2754 - 2777
  • [9] Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model
    Chepfer, H.
    Bony, S.
    Winker, D.
    Chiriaco, M.
    Dufresne, J. -L.
    Seze, G.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (15)
  • [10] The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)
    Chepfer, H.
    Bony, S.
    Winker, D.
    Cesana, G.
    Dufresne, J. L.
    Minnis, P.
    Stubenrauch, C. J.
    Zeng, S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115