Semiclassical dynamics of a spin-1/2 in an arbitrary magnetic field

被引:25
作者
Alscher, A [1 ]
Grabert, H [1 ]
机构
[1] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 26期
关键词
D O I
10.1088/0305-4470/32/26/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spin coherent state path integral describing the dynamics of a spin-1/2 system in a magnetic field of arbitrary time dependence is considered. Defining the path integral as the limit of a Wiener regularized expression, the semiclassical approximation leads to a continuous minimal action path with jumps at the endpoints. The resulting semiclassical propagator is shown to coincide with the exact quantum mechanical propagator. A nonlinear transformation of the angle variables allows for a determination of the semiclassical path and the jumps without solving a boundary-value problem. The semiclassical spin dynamics is thus readily amenable to numerical methods.
引用
收藏
页码:4907 / 4919
页数:13
相关论文
共 23 条
[1]  
ALEKSANDROV VY, 1989, SOV J REMOT SENS+, V5, P391
[2]   A rigorous path integral for quantum spin using flat-space Wiener regularization [J].
Bodmann, B ;
Leschke, H ;
Warzel, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (06) :2549-2559
[3]   On the path integral representation for spin systems [J].
Cabra, DC ;
Dobry, A ;
Greco, A ;
Rossini, GL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08) :2699-2704
[4]   QUANTUM-MECHANICAL PATH-INTEGRALS WITH WIENER MEASURE FOR ALL POLYNOMIAL HAMILTONIANS .2. [J].
DAUBECHIES, I ;
KLAUDER, JR .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) :2239-2256
[5]  
ELINAS D, 1991, PHYS REV A, V45, P1822
[6]   Path integrals for spinning particles, stationary phase and the Duistermaat-Heckmann theorem [J].
Ercolessi, E ;
Morandi, G ;
Napoli, F ;
Pieri, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) :535-553
[7]   FLUCTUATION PATH-INTEGRALS IN THE GENERALIZED COHERENT STATES REPRESENTATION [J].
FUKUI, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (10) :4455-4468
[8]   COHERENT STATES, PATH-INTEGRAL, AND SEMICLASSICAL APPROXIMATION [J].
FUNAHASHI, K ;
KASHIWA, T ;
SAKODA, S ;
FUJII, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (07) :3232-3253
[9]   MORE ABOUT PATH-INTEGRALS FOR SPIN [J].
FUNAHASHI, K ;
KASHIWA, T ;
NIMA, S ;
SAKODA, S .
NUCLEAR PHYSICS B, 1995, 453 (1-2) :508-528
[10]  
Gilmore R., 1974, LIE GROUPS LIE ALGEB, DOI DOI 10.1063/1.3128987