Purpose: The gross, light microscopic, and scanning microscopic appearance of arterial and venous anastomoses in expanded polytetrafluoroethylene (ePTFE) access grafts constructed with nonpenetrating clips were compared with that of those constructed with polypropylene suture. We hypothesized that clip-constructed anastomoses would provide controlled approximation of native vessel intimal and medial components with the ePTFE grafts. We further hypothesized that anastomotic healing with clips would involve primarily an intimal cellular response, as compared with suture-constructed anastomoses in which cells within the media and adventitia walls participate. Methods: Femoral artery to femoral vein arteriovenous (AV) gafts were constructed in five dogs using 4-mm internal diameter ePTFE graft material. Each animal received one AV graft with anastomoses constructed by using polypropylene sutures in one leg and one AV graft with anastomoses constructed with Vascular Closure System clips in the contralateral leg. Animals were given aspirin for the duration of the study, and grafts were explanted at 5 weeks. At the time of explantation, graft segments were grossly evaluated and then underwent light and scanning electron microscopic analysis. Results: At the time of explantation, all access grafts were patent. Joining the ePTFE grafts to the native vessels with clips resulted in minimal vessel wall damage. The lumenal contours of the discontinuous approximation were smooth and without gross endothelial disruption. These observations are in contrast to the lumenal compromise and endothelial disturbance associated with the sutured anastomoses. Furthermore, hemostasis was achieved immediately in the clipped grafts, decreasing the incidence of perianastomic hematoma, Finally, cellular reconstitution occurred at the anastomotic cleft in both the sutured and the clipped junctions. The neointima exhibited an endothelial cell lining on the lumenal surface and the presence of a smooth muscle cell actin positive cells within the subendothelial layer. Conclusion: Vascular Closure System dips are a viable alternative to suture for the approximation of ePTFE AV access grafts to native blood vessels. The use of the clips resulted in a more streamlined anastomosis, with decreased vessel wall damage, immediate hemostasis, and a trend toward shorter procedure times.