Tunneling splitting in vibrational spectra of non-rigid molecules .1. Perturbative instanton approach

被引:65
作者
Benderskii, VA
Vetoshkin, EV
Grebenshchikov, SY
vonLaue, L
Trommsdorff, HP
机构
[1] UNIV GRENOBLE 1,SPECTROMETRIE PHYS LAB,F-38402 ST MARTIN DHER,FRANCE
[2] CNRS,UMR 5588,F-38402 ST MARTIN DHER,FRANCE
[3] RUSSIAN ACAD SCI,INST CHEM PHYS,CHERNOGOLOVKA 142432,MOSCOW REGION,RUSSIA
关键词
non-rigid molecules; multidimensional potential energy surfaces; tunneling dynamics; malonaldehyde; formic acid;
D O I
10.1016/S0301-0104(97)00118-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A perturbative approach to calculating tunneling splittings in multidimensional potential energy surfaces (PES) is developed. In two-dimensional (2D) model PES, represented by a quartic X-4 potential and a harmonic oscillator Y with frequency omega, both coupled by linear (CXY) or gated ((CXY)-Y-2) terms, the extreme tunneling trajectories (ETT) of zero energy are determined by solving the classical equations of motion in the inverted potential, - V(X, Y), in the form of a rapidly converging Taylor series of C/omega < 1. The series for X(t) and Y(t) contain only even or odd powers of C/omega, respectively. The semiclassical action on the ETT expands into a series of (C/omega)(2). When C/omega < 0.5, second order action reproduces the exact value with an accuracy of better than 5%. On multidimensional PES with one saddle point, the contributions to the action of mutually uncoupled transverse vibrations are additive, which enables us to introduce their spectral density, characterizing the tunneling dynamics. The semiclassical wave function of the ground state is found within the approximation of small fluctuation about the ETT, From this wave function, tunneling splittings are calculated, using the Lifshitz-Herring formula. The values obtained are in satisfactory agreement with the results of numerical diagonalization of the Hamiltonian matrix. Hydrogen transfers in malonaldehyde and in formic acid dimers are treated as examples for the application of this approach. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:119 / 142
页数:24
相关论文
共 55 条
[1]  
BENDERSKII V, 1994, CHEM DYNAMICS LOW TE
[2]   QUANTUM DYNAMICS IN LOW-TEMPERATURE CHEMISTRY [J].
BENDERSKII, VA ;
GOLDANSKII, VI ;
MAKAROV, DE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 233 (4-5) :195-339
[3]   TUNNELING SPLITTINGS IN MODEL 2D POTENTIALS .1. V(X, Y) = V(0)(Y(2)-Y(0)2)(2)+1/2-OMEGA(1)2X(2)+1/4-ALPHA-X(4)+CX(2)Y(2) [J].
BENDERSKII, VA ;
GREBENSHCHIKOV, SY ;
MILNIKOV, GV ;
VETOSHKIN, EV .
CHEMICAL PHYSICS, 1994, 188 (01) :19-31
[4]   QUANTUM CHEMICAL-DYNAMICS IN 2 DIMENSIONS [J].
BENDERSKII, VA ;
MAKAROV, DE ;
GRINEVICH, PG .
CHEMICAL PHYSICS, 1993, 170 (03) :275-293
[5]   EFFECT OF MOLECULAR-MOTION ON LOW-TEMPERATURE AND OTHER ANOMALOUSLY FAST CHEMICAL-REACTIONS IN THE SOLID-PHASE [J].
BENDERSKII, VA ;
GOLDANSKII, VI ;
OVCHINNIKOV, AA .
CHEMICAL PHYSICS LETTERS, 1980, 73 (03) :492-495
[6]  
BENDERSKII VA, 1993, INTERN REV PHYS CHEM, V11, P1
[7]  
BENDERSKII VA, 1995, CHEM PHYS, V198, P19
[8]  
BENDERSKII VA, 1995, CHEM PHYS, V194, P281
[9]  
BLAKE GA, 1991, REV SCI I, V62
[10]  
CALAN CG, 1977, PHYS REV D, V16, P1762