On the cubic velocity deviations in lattice Boltzmann methods

被引:28
作者
Házi, G [1 ]
Kávrán, P [1 ]
机构
[1] KFKI Atom Energy Res Inst, Budapest, Hungary
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 12期
关键词
D O I
10.1088/0305-4470/39/12/019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The macroscopic equations derived from the lattice Boltzmann equation are not exactly the Navier-Stokes equations. Here the cubic deviation terms and the methods proposed to eliminate them are studied. The most popular two- and three-dimensional models (D2Q9, D3Q15, D3Q19, D3Q27) are considered in the paper. It is demonstrated that the compensation methods provide only partial elimination of the deviations for these models. It is also shown that the compensation of Qian and Zhou (1998 Europhys. Lett. 42 359) using the compensation parameter K = 1 in a D2Q9 or D3Q27 model can eliminate all the cross terms perfectly, but the deviation terms a(x)pu(x)(3), a(y)pu(y)(3) and a(z)pu(z)(3) still survive the compensation.
引用
收藏
页码:3127 / 3136
页数:10
相关论文
共 11 条
[1]   Lattice BGK simulation of sound waves [J].
Buick, JM ;
Greated, CA ;
Campbell, DL .
EUROPHYSICS LETTERS, 1998, 43 (03) :235-240
[2]   Lattice Boltzmann BGK simulation of nonlinear sound waves: The development of a shock front [J].
Buick, JM ;
Buckley, CL ;
Greated, CA ;
Gilbert, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (21) :3917-3928
[3]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[4]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[5]   Simulation of two-dimensional decaying turbulence using the "incompressible" extensions of the lattice Boltzmann method [J].
Házi, G ;
Jiménez, C .
COMPUTERS & FLUIDS, 2006, 35 (03) :280-303
[6]   SIMULATION OF CAVITY FLOW BY THE LATTICE BOLTZMANN METHOD [J].
HOU, SL ;
ZOU, Q ;
CHEN, SY ;
DOOLEN, G ;
COGLEY, AC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 118 (02) :329-347
[7]   Lattice Boltzmann method for 3-D flows with curved boundary [J].
Mei, R ;
Shyy, W ;
Yu, D ;
Luo, LS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (02) :680-699
[8]   LATTICE BGK MODELS FOR NAVIER-STOKES EQUATION [J].
QIAN, YH ;
DHUMIERES, D ;
LALLEMAND, P .
EUROPHYSICS LETTERS, 1992, 17 (6BIS) :479-484
[9]   LATTICE BGK MODELS FOR THE NAVIER-STOKES EQUATION - NONLINEAR DEVIATION IN COMPRESSIBLE REGIMES [J].
QIAN, YH ;
ORSZAG, SA .
EUROPHYSICS LETTERS, 1993, 21 (03) :255-259
[10]   Complete Galilean-invariant lattice BGK models for the Navier-Stokes equation [J].
Qian, YH ;
Zhou, Y .
EUROPHYSICS LETTERS, 1998, 42 (04) :359-364