Underground allies: How and why do mycelial networks help plants defend themselves?

被引:26
作者
Babikova, Zdenka [1 ,2 ,3 ]
Johnson, David [1 ]
Bruce, Toby [3 ]
Pickett, John [3 ]
Gilbert, Lucy [2 ]
机构
[1] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen, Scotland
[2] James Hutton Inst, Aberdeen, Scotland
[3] Rothamsted Res, Harpenden, Herts, England
基金
英国生物技术与生命科学研究理事会;
关键词
arbuscular mycorrhizal fungi; common mycelial networks; defence-related metabolism; fitness consequences; herbivores; hyphae; rhizosphere signaling; MYCORRHIZAL NETWORKS; INDUCED RESISTANCE; UPLAND GRASSLAND; VOLATILES; ECTOMYCORRHIZAL; INDUCTION; SOIL;
D O I
10.1002/bies.201300092
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most land plants associate with mycorrhizal fungi that can connect roots of neighboring plants in common mycelial networks (CMNs). Recent evidence shows that CMNs transfer warning signals of pathogen and aphid attack between plants. However, we do not know how defence-related signaling via CMNs operates or how ubiquitous it is. Nor do we know what the ecological relevance and fitness consequences are, particularly from the perspective of the mycorrhizal fungus. Here, we focus on the potential fitness benefits for mycorrhizal fungi and outline hypothetical scenarios in which signal transfer via CMNs is modulated in order to acquire the most benefit for the fungus (i.e. acquisition of carbon) for minimal cost. We speculate that the signal may be quantitative and may elicit plant defence responses on different levels depending on the distance the signal is transferred. Finally, we discuss the possibility of practical applications of this phenomenon for crop protection.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 40 条
[1]  
Babikova Zdenka, 2013, Communicative & Integrative Biology, V6, pe25904, DOI 10.4161/cib.25904
[2]   Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack [J].
Babikova, Zdenka ;
Gilbert, Lucy ;
Bruce, Toby J. A. ;
Birkett, Michael ;
Caulfield, John C. ;
Woodcock, Christine ;
Pickett, John A. ;
Johnson, David .
ECOLOGY LETTERS, 2013, 16 (07) :835-843
[3]   A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi [J].
Bahram, Mohammad ;
Polme, Sergei ;
Koljalg, Urmas ;
Tedersoo, Leho .
FEMS MICROBIOLOGY ECOLOGY, 2011, 75 (02) :313-320
[4]   Fungal superhighways: do common mycorrhizal networks enhance below ground communication? [J].
Barto, E. Kathryn ;
Weidenhamer, Jeffrey D. ;
Cipollini, Don ;
Rillig, Matthias C. .
TRENDS IN PLANT SCIENCE, 2012, 17 (11) :633-637
[5]   The Fungal Fast Lane: Common Mycorrhizal Networks Extend Bioactive Zones of Allelochemicals in Soils [J].
Barto, E. Kathryn ;
Hilker, Monika ;
Mueller, Frank ;
Mohney, Brian K. ;
Weidenhamer, Jeffrey D. ;
Rillig, Matthias C. .
PLOS ONE, 2011, 6 (11)
[6]   Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts [J].
Beiler, Kevin J. ;
Durall, Daniel M. ;
Simard, Suzanne W. ;
Maxwell, Sheri A. ;
Kretzer, Annette M. .
NEW PHYTOLOGIST, 2010, 185 (02) :543-553
[7]   Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism [J].
Bever, James D. ;
Richardson, Sarah C. ;
Lawrence, Brandy M. ;
Holmes, Jonathan ;
Watson, Maxine .
ECOLOGY LETTERS, 2009, 12 (01) :13-21
[8]  
Biedrzycki Meredith L, 2010, Commun Integr Biol, V3, P28
[9]   Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants [J].
Childs, Dylan Z. ;
Metcalf, C. J. E. ;
Rees, Mark .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 277 (1697) :3055-3064
[10]   Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria [J].
de la Peña, E ;
Rodriguez-Echeverría, S ;
van der Putten, WH ;
Freitas, H ;
Moens, M .
NEW PHYTOLOGIST, 2006, 169 (04) :829-840