Small-scale lipid-membrane structure: Simulation versus experiment

被引:97
作者
Mouritsen, OG [1 ]
Jorgensen, K [1 ]
机构
[1] ROYAL DANISH SCH PHARM, DEPT PHARMACEUT, DK-2100 COPENHAGEN O, DENMARK
关键词
D O I
10.1016/S0959-440X(97)80116-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, it has become obvious that the conventional picture of the fluid lipid-bilayer component of biological membranes being a fairly structureless 'fluid mosaic' solvent is far from correct. The lipid bilayer displays distinct static and dynamic structural organization on a small scale, for example in terms of differentiated lipid domains, and evidence is accumulating that these structures are of importance for the functioning of biological membranes, including the activity of membrane-bound enzymes and receptors and morphological changes al the cell surface. Insight into the relationship between this small-scale structure and biological functioning holds promise for a more rational approach to modulate function via manipulation of the lipid microenvironment and the lipid/protein interface in particular Computer simulation has proved to be a useful tool in investigating membrane structure on a small scale - specifically the nanometer scale (1-100 nm), which is in between the molecular scale accessible by various spectroscopic techniques and molecular dynamics calculations, and the micrometer scale accessible by scattering and microscopy techniques.
引用
收藏
页码:518 / 527
页数:10
相关论文
共 111 条
[1]   Interaction between inclusions embedded in membranes [J].
ArandaEspinoza, H ;
Berman, A ;
Dan, N ;
Pincus, P ;
Safran, S .
BIOPHYSICAL JOURNAL, 1996, 71 (02) :648-656
[2]   Origin of the lag period in the phospholipase C cleavage of phospholipids in membranes. Concomitant vesicle aggregation and enzyme activation [J].
Basanez, G ;
Nieva, JL ;
Goni, FM ;
Alonso, A .
BIOCHEMISTRY, 1996, 35 (48) :15183-15187
[3]   Insertion and hairpin formation of membrane proteins: A Monte Carlo study [J].
Baumgartner, A .
BIOPHYSICAL JOURNAL, 1996, 71 (03) :1248-1255
[4]   Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes [J].
BenShaul, A ;
BenTal, N ;
Honig, B .
BIOPHYSICAL JOURNAL, 1996, 71 (01) :130-137
[5]   Helix-helix interactions in lipid bilayers [J].
BenTal, N ;
Honig, B .
BIOPHYSICAL JOURNAL, 1996, 71 (06) :3046-3050
[6]   Free-energy determinants of alpha-helix insertion into lipid bilayers [J].
BenTal, N ;
BenShaul, A ;
Nicholls, A ;
Honig, B .
BIOPHYSICAL JOURNAL, 1996, 70 (04) :1803-1812
[7]   Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature [J].
Berger, O ;
Edholm, O ;
Jahnig, F .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2002-2013
[8]  
BERGSHOEFF E, 1995, CLASSICAL QUANT GRAV, V12, P1
[9]   PHYSICAL-PROPERTIES OF THE FLUID LIPID-BILAYER COMPONENT OF CELL-MEMBRANES - A PERSPECTIVE [J].
BLOOM, M ;
EVANS, E ;
MOURITSEN, OG .
QUARTERLY REVIEWS OF BIOPHYSICS, 1991, 24 (03) :293-397
[10]   MODULATION OF RHODOPSIN FUNCTION BY PROPERTIES OF THE MEMBRANE BILAYER [J].
BROWN, MF .
CHEMISTRY AND PHYSICS OF LIPIDS, 1994, 73 (1-2) :159-180