To dissect tumor necrosis factor receptor (Tnfr)-1 (CD120a) and Tnfr2 (CD120b)-dependent signal transduction pathways, primary fibroblasts isolated from inguinal adipose tissue of wild type (wt), tnfr1 degrees, tnfr2 degrees, and tnfr1 degrees/tnfr2 degrees mice were studied. The mitogen-activated protein kinases Erk1 and Erk2 were found to be tyrosine-phosphorylated and activated by Tnf treatment in all wt, tnfr1 degrees, and tnfr2 degrees fibroblasts; the activation was down-regulated 60 min after the start of steady state Tnf treatment. Distinct kinetics of Erk1 and Erk2 activation were detected; the Tnfr1-mediated activation of Erk1 and Erk2 started more slowly and persisted for more prolonged times as compared with Tnfr2 activation. Raf-1, Raf-B, Mek-1, Mek kinase, and p90(rsh) kinases were also shown to be activated independently in a distinct time-dependent pattern through the two Tnf receptors. In addition, both Tnfr1 and Tnfr2 mediated independently the activation of the transcription factor Ap-1 albeit with parallel activation kinetics. In contrast, Tnfr1 exclusively mediated activation of NF-kappa B and fibroblast proliferation; however, Tnfr2 enhanced proliferation triggered through Tnfr1 These findings indicate distinct but also overlapping roles of Tnfr1 and Tnfr2 in primary mouse fibroblasts and suggest different regulation mechanisms of signal transduction pathways under the control of both Tnf receptors.