Nodal domains statistics: A criterion for quantum chaos

被引:113
作者
Blum, G [1 ]
Gnutzmann, S [1 ]
Smilansky, U [1 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
关键词
D O I
10.1103/PhysRevLett.88.114101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the distribution of the (properly normalized) numbers of nodal domains of wave functions in 2D quantum billiards. We show that these distributions distinguish clearly between systems with integrable (separable) or chaotic underlying classical dynamics, and for each case the limiting distribution is universal (system independent). Thus, a new criterion for quantum chaos is provided by the statistics of the wave functions, which complements the well-established criterion based on spectral statistics.
引用
收藏
页码:4 / 114101
页数:4
相关论文
共 17 条
[1]   Maximum norms of chaotic quantum eigenstates and random waves [J].
Aurich, R ;
Bäcker, A ;
Schubert, R ;
Taglieber, M .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 129 (1-2) :1-14
[2]   STATISTICAL PROPERTIES OF HIGHLY EXCITED QUANTUM EIGENSTATES OF A STRONGLY CHAOTIC SYSTEM [J].
AURICH, R ;
STEINER, F .
PHYSICA D, 1993, 64 (1-3) :185-214
[3]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[4]   DISTRIBUTION OF ENERGY-LEVELS OF A QUANTUM FREE PARTICLE ON A SURFACE OF REVOLUTION [J].
BLEHER, PM .
DUKE MATHEMATICAL JOURNAL, 1994, 74 (01) :45-93
[5]  
BLUM G, IN PRESS
[6]   Percolation model or nodal domains of chaotic wave functions [J].
Bogomolny, E ;
Schmit, C .
PHYSICAL REVIEW LETTERS, 2002, 88 (11) :4
[7]  
Courant R, 1923, NACHR GES WISS GO MP, pK1
[8]  
GUTZWILLER MC, 1990, CHAOS CLASSICAL QUAN, pCH15
[9]  
HELLER EJ, 1991, CHAOS QUANTUM PHYSIC
[10]   PERCOLATION AND CLUSTER DISTRIBUTION .1. CLUSTER MULTIPLE LABELING TECHNIQUE AND CRITICAL CONCENTRATION ALGORITHM [J].
HOSHEN, J ;
KOPELMAN, R .
PHYSICAL REVIEW B, 1976, 14 (08) :3438-3445