Compactly supported orthogonal symmetric scaling functions

被引:6
作者
Belogay, E [1 ]
Wang, Y [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
wavelets; orthogonal scaling function; symmetric scaling function;
D O I
10.1006/acha.1999.0265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Daubechies (1988, Comm. Pure Appl. Math. 41, 909-996) showed that, except for the Hear function, there exist no compactly supported orthogonal symmetric scaling functions for the dilation q = 2. Nevertheless, such scaling functions do exist for dilations q > 2 (as evidenced by Chui and Lien's construction (1995, Appl. Comput. Harmon. Anal. 2, 68-84) for q = 3); these functions are the main object of this paper. We construct new symmetric scaling functions and introduce the "Batman" family of continuous symmetric scaling functions with very small supports. We establish the exact smoothness of the "Batman" scaling functions using the joint spectral radius technique. (C) 1999 Academic Press.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 17 条
[1]  
ADELSON E, 1987, P SPIE VIS COMM IM P, V2
[2]   BOUNDED SEMIGROUPS OF MATRICES [J].
BERGER, MA ;
WANG, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 166 :21-27
[3]  
CHIU C, 1995, APPL COMPUT HARMON A, V2, P68
[4]  
COLLELA D, 1994, SIAM J MATRIX ANAL A, V15, P496
[5]   2-SCALE DIFFERENCE-EQUATIONS .1. EXISTENCE AND GLOBAL REGULARITY OF SOLUTIONS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (05) :1388-1410
[6]   SETS OF MATRICES ALL INFINITE PRODUCTS OF WHICH CONVERGE [J].
DAUBECHIES, I ;
LAGARIAS, JC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 161 :227-263
[7]   2-SCALE DIFFERENCE-EQUATIONS .2. LOCAL REGULARITY, INFINITE PRODUCTS OF MATRICES AND FRACTALS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :1031-1079
[8]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[9]  
DAUBECHIES I, 1992, CBMS NSF REGIONAL C, V61
[10]  
Grochenig K., 1994, Applied and Computational Harmonic Analysis, V1, P242, DOI 10.1006/acha.1994.1011