Rise and fall of hidden string order of lattice bosons

被引:183
作者
Berg, Erez [1 ]
Dalla Torre, Emanuele G. [2 ]
Giamarchi, Thierry [3 ]
Altman, Ehud [2 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[3] Univ Geneva, DPMC MaNEP, CH-1211 Geneva, Switzerland
来源
PHYSICAL REVIEW B | 2008年 / 77卷 / 24期
关键词
D O I
10.1103/PhysRevB.77.245119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the ground-state properties of a newly discovered phase of one-dimensional lattice bosons with extended interactions [E. G. Dalla Torre , Phys. Rev. Lett. 97, 260401 (2006)]. The new phase, termed the Haldane insulator in analogy with the gapped phase of spin-1 chains, is characterized by a nonlocal order parameter, which can only be written as an infinite string in terms of the bosonic densities. We show that the string order can nevertheless be probed with physical fields that couple locally, via the effect those fields have on the quantum phase transitions separating the exotic phase from the conventional Mott and density wave phases. Using a field theoretical analysis, we show that a perturbation that breaks lattice inversion symmetry gaps the critical point separating the Mott and Haldane phases and eliminates the sharp distinction between them. This is remarkable given that neither of these phases involves broken inversion symmetry. We also investigate the evolution of the phase diagram with the tunable coupling between parallel chains in an optical lattice setup. We find that interchain tunneling destroys the direct phase transition between the Mott and Haldane insulators by establishing an intermediate superfluid phase. On the other hand, coupling the chains only by weak repulsive interactions does not modify the structure of the phase diagram. The theoretical predictions are confirmed with numerical calculations using the density matrix renormalization group.
引用
收藏
页数:14
相关论文
共 37 条
[1]   Oscillating superfluidity of bosons in optical lattices [J].
Altman, E ;
Auerbach, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (25) :1-250404
[2]   Controlled atom dynamics in a double-well optical lattice [J].
Anderlini, M ;
Sebby-Strabley, J ;
Kruse, J ;
Porto, JV ;
Phillips, WD .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (10) :S199-S210
[3]   Fragility of string orders [J].
Anfuso, F. ;
Rosch, A. .
PHYSICAL REVIEW B, 2007, 76 (08)
[4]   Electrostatic trapping of ammonia molecules [J].
Bethlem, HL ;
Berden, G ;
Crompvoets, FMH ;
Jongma, RT ;
van Roij, AJA ;
Meijer, G .
NATURE, 2000, 406 (6795) :491-494
[5]  
BLOCH I, REV MOD PHY IN PRESS
[6]   Ground-state phase diagram of S=1 XXZ chains with uniaxial single-ion-type anisotropy -: art. no. 104401 [J].
Chen, W ;
Hida, K ;
Sanctuary, BC .
PHYSICAL REVIEW B, 2003, 67 (10) :7
[7]   Hidden order in 1D bose insulators [J].
Dalla Torre, Emanuele G. ;
Berg, Erez ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2006, 97 (26)
[8]   PREROUGHENING TRANSITIONS IN CRYSTAL-SURFACES AND VALENCE-BOND PHASES IN QUANTUM SPIN CHAINS [J].
DENNIJS, M ;
ROMMELSE, K .
PHYSICAL REVIEW B, 1989, 40 (07) :4709-4734
[9]   Mott-superfluid transition in bosonic ladders [J].
Donohue, P ;
Giamarchi, T .
PHYSICAL REVIEW B, 2001, 63 (18)
[10]   Quo vadis, cold molecules? [J].
Doyle, J ;
Friedrich, B ;
Krems, RV ;
Masnou-Seeuws, F .
EUROPEAN PHYSICAL JOURNAL D, 2004, 31 (02) :149-164