Quantum field theories in finite volume: Excited state energies

被引:174
作者
Bazhanov, VV
Lukyanov, SL
Zamolodchikov, AB
机构
[1] AUSTRALIAN NATL UNIV, IAS, CTR MATH & APPLICAT, CANBERRA, ACT 0200, AUSTRALIA
[2] VA STEKLOV MATH INST, ST PETERSBURG 191011, RUSSIA
[3] CORNELL UNIV, NEWMAN LAB, ITHACA, NY 14853 USA
[4] UNIV MONTPELLIER 2, PHYS MATH LAB, F-34095 MONTPELLIER, FRANCE
[5] LD LANDAU THEORET PHYS INST, CHERNOGOLOVKA 142432, RUSSIA
基金
美国国家科学基金会;
关键词
integrable models; finite-size scaling; Lee-Yang model; thermodynamic Bethe ansatz;
D O I
10.1016/S0550-3213(97)00022-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We develop a method of computing the excited state energies in Integrable Quantum Field Theories (IQFT) in finite geometry, with the spatial coordinate compactified on a circle of circumference R. The IQFT ''commuting transfer matrices'' introduced earlier [Commun. Math. Phys. 177 (1996) 381] for Conformal Field Theories (CFT) are generalized to non-conformal IQFT obtained by perturbing CFT with the operator Phi(1,3). We study the models in which the fusion relations for these ''transfer matrices'' truncate and provide closed integral equations which generalize the equations of the thermodynamic Bethe ansatz to excited states. The explicit calculations are done for the first excited state in the ''scaling Lee-Yang model''. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:487 / 531
页数:45
相关论文
共 40 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTION
[2]   HARD HEXAGONS - INTERFACIAL-TENSION AND CORRELATION LENGTH [J].
BAXTER, RJ ;
PEARCE, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (03) :897-910
[3]   PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL [J].
BAXTER, RJ .
ANNALS OF PHYSICS, 1972, 70 (01) :193-&
[4]  
Baxter RJ., 1982, Exactly solved models in statistical mechanics
[5]   Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (02) :381-398
[6]  
BAZHANOV VV, IN PRESS INTEGRABLE, V3
[7]  
BAZHANOV VV, 961405 CLNS
[8]  
BAZHANOV VV, UNPUB
[9]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[10]   RESIDUAL QUANTUM SYMMETRIES OF THE RESTRICTED SINE-GORDON THEORIES [J].
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :721-751