Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability

被引:256
作者
Chen, Xiang Ying [1 ]
Chen, Chong [1 ]
Zhang, Zhong Jie [2 ]
Xie, Dong Hua [1 ]
Deng, Xiao [1 ]
Liu, Jian Wei [3 ]
机构
[1] Hefei Univ Technol, Anhui Key Lab Controllable Chem React & Mat Chem, Sch Chem Engn, Hefei 230009, Anhui, Peoples R China
[2] Anhui Univ, Anhui Prov Key Lab Environm Friendly Polymer Mat, Coll Chem & Chem Engn, Hefei 230039, Anhui, Peoples R China
[3] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Urea formaldehyde resins; Ca(OAc)(2); Template; Supercapacitor; TEMPLATE SYNTHESIS; ACTIVATED CARBON; PERFORMANCE; ENERGY; ELECTRODES; GRAPHENE; DENSITY; COMPOSITES; EVOLUTION;
D O I
10.1016/j.jpowsour.2012.12.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped porous carbons have been prepared by a direct carbonization of the mixture of urea formaldehyde resins (abbr. UF resins) and calcium acetate monohydrate. The experimental results reveal that the mass ratios of UF resins-to-Ca(OAc)(2)center dot H2O and carbonization temperatures can play crucial roles in the formation of porous carbon with various surface area and structure as well as determining the carbons' surface areas, pore structures and capacitive performance. The UF-Ca-700-3:1 sample exhibits much large specific capacitances ca. 334.8 F g(-1) and 224.0 F g(-1) at the current density of 0.5 and 1.0 A g(-1) in 6.0 mol L-1 aqueous KOH aqueous electrolyte, respectively. The UF-Ca-900-3:1 displays more superior rate capability, which can possess high specific capacitance retention as ca. 67.1% and 51.4% at the high current densities of 20 and 40 A g(-1), respectively. In addition, a capacity fading lower than 1% after 5000 cycles of charging and discharging is obtained, indicating its long-term electrochemical stability. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 45 条
[1]   Template synthesis of mesoporous carbons with tailorable pore size and porosity [J].
Alvarez, S ;
Fuertes, AB .
CARBON, 2004, 42 (02) :433-436
[2]   Self-reinforced Ca-hexaluminate/alumina composites with graded microstructures [J].
Asmi, D. ;
Low, I. M. .
CERAMICS INTERNATIONAL, 2008, 34 (02) :311-316
[3]   Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor [J].
Brousse, Thierry ;
Taberna, Pierre-Louis ;
Crosnier, Olivier ;
Dugas, Romain ;
Guillemet, Philippe ;
Scudeller, Yves ;
Zhou, Yingke ;
Favier, Frederic ;
Belanger, Daniel ;
Simon, Patrice .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :633-641
[4]   R&D considerations for the performance and application of electrochemical capacitors [J].
Burke, Andrew .
ELECTROCHIMICA ACTA, 2007, 53 (03) :1083-1091
[5]   Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors [J].
Chen, Li-Feng ;
Zhang, Xu-Dong ;
Liang, Hai-Wei ;
Kong, Mingguang ;
Guan, Qing-Fang ;
Chen, Ping ;
Wu, Zhen-Yu ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (08) :7092-7102
[6]   Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (39) :17615-17624
[7]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[8]   High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition [J].
Du, Chunsheng ;
Pan, Ning .
NANOTECHNOLOGY, 2006, 17 (21) :5314-5318
[9]   Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage [J].
Fang, Baizeng ;
Kim, Jung Ho ;
Kim, Min-Sik ;
Bonakdarpour, Arman ;
Lam, Alfred ;
Wilkinson, David P. ;
Yu, Jong-Sung .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (36) :19031-19038
[10]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950