Hydroxynonenal and uncoupling proteins: A model for protection against oxidative damage

被引:58
作者
Echtay, KS
Pakay, JL
Esteves, TC
Brand, MD
机构
[1] Univ Balamand, Dept Biomed Sci, Fac Med & Med Sci, Tripoli, Lebanon
[2] MRC, Dunn Human Nutr Unit, Cambridge, England
关键词
mitochondria; proton leak; superoxide; hydroxynonenal; ageing; lipid peroxidation; retinoic acid; UCP;
D O I
10.1002/biof.5520240114
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this mini review we summarize recent studies from our laboratory that show the involvement of superoxide and the lipid peroxidation product 4-hydroxynonenal in the regulation of mitochondrial uncoupling. Superoxide produced during mitochondrial respiration is a major cause of the cellular oxidative damage that may underlie degenerative diseases and ageing. Superoxide production is very sensitive to the magnitude of the mitochondrial protonmotive force, so can be strongly decreased by mild uncoupling. Superoxide is able to give rise to other reactive oxygen species, which elicit deleterious effects primarily by oxidizing intracellular components, including lipids, DNA and proteins. Superoxide-induced lipid peroxidation leads to the production of reactive aldehydes, including 4-hydroxynonenal. These aldehydic lipid peroxidation products are in turn able to modify proteins such as mitochondrial uncoupling proteins and the adenine nucleotide translocase, converting them into active proton transporters. This activation induces mild uncoupling and so diminishes mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of energy production.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 77 条
[1]   Uncoupling proteins and thermoregulation [J].
Argyropoulos, G ;
Harper, ME .
JOURNAL OF APPLIED PHYSIOLOGY, 2002, 92 (05) :2187-2198
[2]   Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production [J].
Arsenijevic, D ;
Onuma, H ;
Pecqueur, C ;
Raimbault, S ;
Manning, BS ;
Miroux, B ;
Couplan, E ;
Alves-Guerra, MC ;
Goubern, M ;
Surwit, R ;
Bouillaud, F ;
Richard, D ;
Collins, S ;
Ricquier, D .
NATURE GENETICS, 2000, 26 (04) :435-439
[3]   Uncoupling proteins 2 and 3 - Potential regulators of mitochondrial energy metabolism [J].
Boss, O ;
Hagen, T ;
Lowell, BB .
DIABETES, 2000, 49 (02) :143-156
[4]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[5]   Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP3, BMCP1 and UCP4 [J].
Bouillaud, F ;
Couplan, E ;
Pecqueur, C ;
Ricquier, D .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1504 (01) :107-119
[6]  
Brand MD, 2004, BIOCHEM SOC SYMP, V71, P203
[7]   Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins [J].
Brand, MD ;
Affourtit, C ;
Esteves, TC ;
Green, K ;
Lambert, AJ ;
Miwa, S ;
Pakay, JL ;
Parker, N .
FREE RADICAL BIOLOGY AND MEDICINE, 2004, 37 (06) :755-767
[8]   Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3 [J].
Brand, MD ;
Pamplona, R ;
Portero-Otín, M ;
Requena, JR ;
Roebuck, SJ ;
Buckingham, JA ;
Clapham, JC ;
Cadenas, S .
BIOCHEMICAL JOURNAL, 2002, 368 :597-603
[9]   THE CAUSES AND FUNCTIONS OF MITOCHONDRIAL PROTON LEAK [J].
BRAND, MD ;
CHIEN, LF ;
AINSCOW, EK ;
ROLFE, DFS ;
PORTER, RK .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1187 (02) :132-139
[10]   THE PROTON LEAK ACROSS THE MITOCHONDRIAL INNER MEMBRANE [J].
BRAND, MD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1018 (2-3) :128-133