Linear canonical transformations and quantum phase: a unified canonical and algebraic approach

被引:12
作者
Hakioglu, T [1 ]
机构
[1] Bilkent Univ, Dept Phys, TR-06533 Bilkent, Turkey
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 22期
关键词
D O I
10.1088/0305-4470/32/22/312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The algebra of generalized linear quantum canonical transformations is examined in the perspective of Schwinger's unitary-canonical operator basis. Formulation of the quantum phase problem within the theory of quantum canonical transformations and in particular with the generalized quantum action-angle phase space formalism is established and it is shown that the conceptual foundation of the quantum phase problem lies within the algebraic properties of the canonical transformations in the quantum phase space. The representations of the Wigner function in the generalized action-angle unitary operator pair for certain Hamiltonian systems with dynamical symmetry is examined. This generalized canonical formalism is applied to the quantum harmonic oscillator to examine the properties of the unitary quantum phase operator as well as the action-angle Wigner function.
引用
收藏
页码:4111 / 4130
页数:20
相关论文
共 49 条
[2]  
Arnold VI., 1989, MATH METHODS CLASSIC, P520, DOI 10.1007/978-1-4757-1693-1
[3]   COHERENT STATES IN FINITE QUANTUM-MECHANICS [J].
ATHANASIU, GG ;
FLORATOS, EG .
NUCLEAR PHYSICS B, 1994, 425 (1-2) :343-364
[4]  
BALIAN R, 1986, CR ACAD SCI I-MATH, V303, P773
[5]   Quantum mechanics II [J].
Born, M ;
Heisenberg, W ;
Jordan, P .
ZEITSCHRIFT FUR PHYSIK, 1926, 35 (8/9) :557-615
[6]   CLASSIFICATION OF SECOND-ORDER RAISING OPERATORS FOR HAMILTONIANS IN 2 VARIABLES [J].
BOYER, CP ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (09) :1484-1489
[7]  
BROWN E, 1964, PHYS REV, V133, P1038
[8]   The discrete fractional Fourier transform [J].
Candan, C ;
Kutay, MA ;
Ozaktas, HM .
ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, :1713-1716
[9]   COHERENT STATES AND NUMBER-PHASE UNCERTAINTY RELATION [J].
CARRUTHERS, P ;
NIETO, MM .
PHYSICAL REVIEW LETTERS, 1965, 14 (11) :387-+
[10]   PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS [J].
CARRUTHERS, P ;
NIETO, MM .
REVIEWS OF MODERN PHYSICS, 1968, 40 (02) :411-+