CO2 signaling in guard cells:: Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant

被引:144
作者
Young, Jared J.
Mehta, Samar
Israelsson, Maria
Godoski, Jan
Grill, Erwin
Schroeder, Julian I. [1 ]
机构
[1] Univ Calif San Diego, Div Biol Sci, Cell & Dev Biol Sect, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Mol Genet 0116, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Grad Program Neurosci, La Jolla, CA 92093 USA
[5] Tech Univ Munich, Lehrstuhl Bot, D-85350 Freising Weihenstephan, Germany
关键词
calcium signaling; cytoplasmic calcium; calcium specificity; stomata; Arabidopsis thaliana;
D O I
10.1073/pnas.0602225103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Leaf stomata close in response to high carbon dioxide levels and open at low CO2. CO2 concentrations in leaves are altered by daily dark/light cycles, as well as the continuing rise in atmospheric CO2. Relative to abscisic acid and blue light signaling, little is known about the molecular, cellular, and genetic mechanisms of CO2 signaling in guard cells. Interestingly, we report that repetitive Ca2+ transients were observed during the stomatal opening stimulus, low [CO2]. Furthermore, low/high [CO2] transitions modulated the cytosolic Ca2+ transient pattern in Arabidopsis guard cells (Landsberg erecta). Inhibition of cytosolic Ca2+ transients, achieved by loading guard cells with the calcium chelator 1,2-bis(2-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid and not adding external Ca2+, attenuated both high CO2-induced stomatal closing and low CO2-induced stomatal opening, and also revealed a Ca2+-independent phase of the CO2 response. Furthermore, the mutant, growth controlled by abscisic acid (gca2) shows impairment in [CO2] modulation of the cytosolic Ca2+ transient rate and strong impairment in high CO2-induced stomatal closing. Our findings provide insights into guard cell CO2 signaling mechanisms, reveal Ca2+-independent events, and demonstrate that calcium elevations can participate in opposed signaling events during stomatal opening and closing. A model is proposed in which CO2 concentrations prime Ca2+ sensors, which could mediate specificity in Ca2+ signaling.
引用
收藏
页码:7506 / 7511
页数:6
相关论文
共 59 条
[1]   What have we learned from 15 years of free-air CO2 enrichment (FACE)?: A meta-analytic review of the responses of photosynthesis, canopy [J].
Ainsworth, EA ;
Long, SP .
NEW PHYTOLOGIST, 2005, 165 (02) :351-371
[2]  
ALLAN AC, 1994, PLANT CELL, V6, P1319
[3]   Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells [J].
Allen, GJ ;
Kwak, JM ;
Chu, SP ;
Llopis, J ;
Tsien, RY ;
Harper, JF ;
Schroeder, JI .
PLANT JOURNAL, 1999, 19 (06) :735-747
[4]   Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2 [J].
Allen, GJ ;
Murata, Y ;
Chu, SP ;
Nafisi, M ;
Schroeder, JI .
PLANT CELL, 2002, 14 (07) :1649-1662
[5]   A defined range of guard cell calcium oscillation parameters encodes stomatal movements [J].
Allen, GJ ;
Chu, SP ;
Harrington, CL ;
Schumacher, K ;
Hoffman, T ;
Tang, YY ;
Grill, E ;
Schroeder, JI .
NATURE, 2001, 411 (6841) :1053-1057
[6]   Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant [J].
Allen, GJ ;
Chu, SP ;
Schumacher, K ;
Shimazaki, CT ;
Vafeados, D ;
Kemper, A ;
Hawke, SD ;
Tallman, G ;
Tsien, RY ;
Harper, JF ;
Chory, J ;
Schroeder, JI .
SCIENCE, 2000, 289 (5488) :2338-2342
[7]   The cellular basis of guard cell sensing of rising CO2 [J].
Assmann, SM .
PLANT CELL AND ENVIRONMENT, 1999, 22 (06) :629-637
[8]   Activity-dependent homeostatic specification of transmitter expression in embryonic neurons [J].
Borodinsky, LN ;
Root, CM ;
Cronin, JA ;
Sann, SB ;
Gu, XN ;
Spitzer, NC .
NATURE, 2004, 429 (6991) :523-530
[9]   The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells [J].
Brearley, J ;
Venis, MA ;
Blatt, MR .
PLANTA, 1997, 203 (02) :145-154
[10]   Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions [J].
Bunce, JA .
OECOLOGIA, 2004, 140 (01) :1-10