Evolutionary tuning of SVM parameter values in multiclass problems

被引:112
作者
Lorena, Ana Carolina [1 ]
de Carvalho, Andre C. P. L. F. [2 ]
机构
[1] Univ Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210170 Santo Andre, SP, Brazil
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Ciencias Comp, BR-13560970 Sao Carlos, SP, Brazil
关键词
Parameter tuning; Machine learning; Multiclass classification; Support vector machines; Genetic algorithms;
D O I
10.1016/j.neucom.2008.01.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support vector machines (SVMs) were originally formulated for the solution of binary classification problems. In multiclass problems, a decomposition approach is often employed, in which the multiclass problem is divided into multiple binary subproblems, whose results are combined. Generally, the performance of SVM classifiers is affected by the selection of values for their parameters. This paper investigates the use of genetic algorithms (GAs) to tune the parameters of the binary SVMs in common multiclass decompositions. The developed GA may search for a set of parameter values common to all binary classifiers or for differentiated values for each binary classifier. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3326 / 3334
页数:9
相关论文
共 49 条
[1]   Reducing multiclass to binary: A unifying approach for margin classifiers [J].
Allwein, EL ;
Schapire, RE ;
Singer, Y .
JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (02) :113-141
[2]  
Anguita D, 2002, LECT NOTES COMPUT SC, V2415, P1345
[3]  
[Anonymous], P INT JOINT C NEUR N
[4]  
[Anonymous], 1998, CSDTR9804 U LOND DEP
[5]  
[Anonymous], LIBSVM LIB SUPPORT V
[6]  
[Anonymous], 2003, P INT C REC ADV NAT
[7]  
[Anonymous], J INTELLIGENT FUZZY
[8]  
[Anonymous], 1997, Machine Learning
[9]  
BACK T, 2000, EVOLUTIONARY COMPUTA, V1, P132
[10]  
BEASLEY D, 2000, EVOLUTIONARY COMPUTA, V1, P4