Characterization of photosystem II in salt-stressed cyanobacterial Spirulina platensis cells

被引:61
作者
Gong, Hongmei
Tang, Yunlai
Wang, Jia
Wen, Xiaogang
Zhang, Lixin
Lu, Congming [1 ]
机构
[1] Chinese Acad Sci, Photosynth Res Ctr, Inst Bot, Beijing 100093, Peoples R China
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2008年 / 1777卷 / 06期
关键词
chlorophyll fluorescence; photosystem II; PsbO protein; salt stress; Spirulina platensis; thermoluminescence;
D O I
10.1016/j.bbabio.2008.03.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PSII activity was inhibited after Spirulina platensis cells were incubated with different salt concentrations (0-0.8 M NaCl) for 12 h. Flash-induced fluorescence kinetics showed that in the absence of DCMU, the half time of the fast and slow components decreased while that of the middle component increased considerably with increasing salt concentration. In the presence of DCMU, fluorescence relaxation was dominated by a 0.6s component in control cells. After salt stress, this was partially replaced by a faster new component with half time of 20-50 ms. Thermoluminescence measurements revealed that S(2)Q(A)(-) and S(2)Q(B)(-) recombinations were shifted to higher temperatures in parallel and the intensities of the thermoluminescence emissions were significantly reduced in salt-stressed cells. The period-four oscillation of the thermoluminescence B band was highly damped. There were no significant changes in contents of CP47, CP43, cytochrome c550, and D1 proteins. However, content of the PsbO protein in thylakoid fraction decreased but increased significantly in soluble fraction. The results suggest that salt stress leads to a modification of the Q(B) niche at the acceptor side and an increase in the stability of the S-2 state at the donor side, which is associated with a dissociation of the PsbO protein. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:488 / 495
页数:8
相关论文
共 74 条
[1]   A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light [J].
Al-Taweel, Khaled ;
Iwaki, Toshio ;
Yabuta, Yukinori ;
Shigeoka, Shigeru ;
Murata, Norio ;
Wadano, Akira .
PLANT PHYSIOLOGY, 2007, 145 (01) :258-265
[2]   Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis [J].
Allakhverdiev, SI ;
Nishiyama, Y ;
Miyairi, S ;
Yamamoto, H ;
Inagaki, N ;
Kanesaki, Y ;
Murata, N .
PLANT PHYSIOLOGY, 2002, 130 (03) :1443-1453
[3]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[5]  
BARBER J, TRENDS BIOCH SCI, V17, P61
[6]   CHLOROPHYLL FLUORESCENCE AS A POSSIBLE TOOL FOR SALINITY TOLERANCE SCREENING IN BARLEY (HORDEUM-VULGARE L) [J].
BELKHODJA, R ;
MORALES, F ;
ABADIA, A ;
GOMEZAPARISI, J ;
ABADIA, J .
PLANT PHYSIOLOGY, 1994, 104 (02) :667-673
[7]   COMPLEMENTARY CHROMATIC ADAPTATION IN A FILAMENTOUS BLUE-GREEN-ALGA [J].
BENNETT, A ;
BOGORAD, L .
JOURNAL OF CELL BIOLOGY, 1973, 58 (02) :419-435
[8]   GAS-EXCHANGE PROPERTIES OF SALT-STRESSED OLIVE (OLEA-EUROPEA L) LEAVES [J].
BONGI, G ;
LORETO, F .
PLANT PHYSIOLOGY, 1989, 90 (04) :1408-1416
[9]  
Borowitzka M.A., 1994, ALGAL BIOTECHNOLOGY, P5
[10]   PLANT PRODUCTIVITY AND ENVIRONMENT [J].
BOYER, JS .
SCIENCE, 1982, 218 (4571) :443-448