Helicase-defective RuvBD113E promotes RuvAB-mediated branch migration in vitro

被引:9
作者
George, H
Mézard, C
Stasiak, A
West, SC [1 ]
机构
[1] Imperial Canc Res Fund, Clare Hall Labs, Genet Recombinat Lab, S Mimms EN6 3LD, Herts, England
[2] Univ Lausanne, Lab Anal Ultrastruct, CH-1015 Lausanne, Switzerland
关键词
recombination; DNA repair; Holliday junction; ATPase; DNA unwinding;
D O I
10.1006/jmbi.1999.3187
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Escherichia coli, the RuvA and RuvB proteins interact at Holliday junctions to promote branch migration leading to the formation of heteroduplex DNA. RuvA provides junction-binding specificity and RuvB drives Am-dependent branch migration. Since RuvB contains sequence motifs characteristic of a DNA helicase and RuvAB exhibit helicase activity in vitro, we have analysed the role of DNA unwinding in relation to branch migration. A mutant RuvB protein, RUVBD113E, mutated in helicase motif II (the DExx box), has been purified to homogeneity. The mutant protein forms hexameric;rings on DNA similar to those formed by wild-type protein and promotes branch migration in the presence of RuvA. However, RuvB(D113E) exhibits reduced ATPase activity and is severely compromised in its DNA helicase activity. Models for RuvAB-mediated branch migration that invoke only Limited DNA unwinding activity are proposed. (C) 1999 Academic Press.
引用
收藏
页码:505 / 519
页数:15
相关论文
共 76 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]  
ADAMS B, 1995, PSYCHOLOGIST, V8, P247
[3]   Bypass of DNA heterologies during RuvAB-mediated three- and four-strand branch migration [J].
Adams, DE ;
West, SC .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 263 (04) :582-596
[4]   Characterization and crystallization of the helicase domain of bacteriophage T7 gene 4 protein [J].
Bird, LE ;
Hakansson, K ;
Pan, H ;
Wigley, DB .
NUCLEIC ACIDS RESEARCH, 1997, 25 (13) :2620-2626
[5]   THE BINDING CHANGE MECHANISM FOR ATP SYNTHASE - SOME PROBABILITIES AND POSSIBILITIES [J].
BOYER, PD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1140 (03) :215-250
[6]   NEGATIVE COOPERATIVITY IN THE BINDING OF NUCLEOTIDES TO ESCHERICHIA-COLI REPLICATIVE HELICASE DNAB PROTEIN - INTERACTIONS WITH FLUORESCENT NUCLEOTIDE ANALOGS [J].
BUJALOWSKI, W ;
KLONOWSKA, MM .
BIOCHEMISTRY, 1993, 32 (22) :5888-5900
[7]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[8]   Formation of RuvABC-Holliday junction complexes in vitro [J].
Davies, AA ;
West, SC .
CURRENT BIOLOGY, 1998, 8 (12) :725-727
[9]  
DOMBROSKI AJ, 1988, J BIOL CHEM, V263, P18802
[10]   BACTERIOPHAGE-T7 HELICASE-PRIMASE PROTEINS FORM RINGS AROUND SINGLE-STRANDED-DNA THAT SUGGEST A GENERAL STRUCTURE FOR HEXAMERIC HELICASES [J].
EGELMAN, EH ;
YU, X ;
WILD, R ;
HINGORANI, MM ;
PATEL, SS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (09) :3869-3873