Structure of the subunit c oligomer in the F1F0 ATP synthase:: Model derived from solution structure of the monomer and cross-linking in the native enzyme

被引:104
作者
Dmitriev, OY [1 ]
Jones, PC [1 ]
Fillingame, RH [1 ]
机构
[1] Univ Wisconsin, Sch Med, Dept Biomol Chem, Madison, WI 53706 USA
关键词
D O I
10.1073/pnas.96.14.7785
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The structure of the subunit c oligomer of the H+-transporting ATP synthase of Escherichia coli has been modeled by molecular dynamics and energy minimization calculations from the solution structure of monomeric subunit c and 21 intersubunit distance constraints derived from cross-linking of subunits, Subunit c folds in a hairpin-like structure with two transmembrane helices, In the c(12) oligomer model, the subunits pack to form a compact hollow cylinder with an outer diameter of 55-60 Angstrom and an inner space with a minimal diameter of 11-12 Angstrom. Phospholipids are presumed to pack in the inner space in the native membrane. The transmembrane helices pack in two concentric rings with helix 1 inside and helix 2 outside, The calculations strongly favor this structure versus a model with helix 2 inside and helix 1 outside. Asp-61, the H+-transporting residue, packs toward the center of the four transmembrane helices of two interacting subunits, From this position at the front face of one subunit, the Asp-61 carboxylate lies proximal to side chains of Ala-24, Ile-28, and Ala-62, projecting from the back face of a second subunit. These interactions were predicted from previous mutational analyses. The packing supports the suggestion that a c-c dimer is the functional unit. The positioning of the Asp-61 carboxyl in the center of the interacting transmembrane helices, rather than at the periphery of the cylinder, has important implications regarding possible mechanisms of H+-transport-driven rotation of the c oligomer during ATP synthesis.
引用
收藏
页码:7785 / 7790
页数:6
相关论文
共 33 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]  
BIRKENHAGER R, 1995, EUR J BIOCHEM, V230, P58, DOI 10.1111/j.1432-1033.1995.0058i.x
[3]   The ATP synthase - A splendid molecular machine [J].
Boyer, PD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1997, 66 :717-749
[4]   ROTATION OF SUBUNITS DURING CATALYSIS BY ESCHERICHIA-COLI F1-ATPASE [J].
DUNCAN, TM ;
BULYGIN, VV ;
ZHOU, Y ;
HUTCHEON, ML ;
CROSS, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (24) :10964-10968
[5]   Energy transduction in ATP synthase [J].
Elston, T ;
Wang, HY ;
Oster, G .
NATURE, 1998, 391 (6666) :510-513
[6]   ATP synthase: A tentative structural model [J].
Engelbrecht, S ;
Junge, W .
FEBS LETTERS, 1997, 414 (03) :485-491
[7]   Lipid patches in membrane protein oligomers: Crystal structure of the bacteriorhodopsin-lipid complex [J].
Essen, LO ;
Siegert, R ;
Lehmann, WD ;
Oesterhelt, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) :11673-11678
[8]  
Fillingame RH, 1997, J EXP BIOL, V200, P217
[9]  
FILLINGAME RH, 1991, J BIOL CHEM, V266, P20934
[10]   Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase [J].
Girvin, ME ;
Rastogi, VK ;
Abildgaard, F ;
Markley, JL ;
Fillingame, RH .
BIOCHEMISTRY, 1998, 37 (25) :8817-8824