Metabolic engineering of plants for alkaloid production

被引:68
作者
Hughes, EH
Shanks, JV
机构
[1] Iowa State Univ Sci & Technol, Dept Chem Engn, Ames, IA 50011 USA
[2] Rice Univ, Dept Chem Engn, Houston, TX 77030 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/mben.2001.0205
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Alkaloids purified from plants provide many pharmacologically active compounds, including leading chemotherapy drugs. As is generally true of secondary metabolites, overall productivity is low, making commercial production expensive. Alternative production methods remain impractical, leaving the plant as the best source for these valuable chemicals. Recently, significant progress in characterizing the biosynthetic pathways leading to various alkaloids has been made, and a number of relevant genes have been cloned. Metabolic engineering employing such genes provides a promising technology for improved productivity in plant cell cultures, plant tissue cultures, or intact plants. In exploring solutions though, metabolic engineers must be careful to recognize the limitations inherent in designing plant systems. (C) 2002 Elsevier Science.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 70 条
[1]  
Belbahri L, 2000, BIOTECHNOL BIOENG, V69, P11, DOI 10.1002/(SICI)1097-0290(20000705)69:1&lt
[2]  
11::AID-BIT2&gt
[3]  
3.0.CO
[4]  
2-J
[5]   ANALYSIS OF A CDNA-ENCODING ARGININE DECARBOXYLASE FROM OAT REVEALS SIMILARITY TO THE ESCHERICHIA-COLI ARGININE DECARBOXYLASE AND EVIDENCE OF PROTEIN PROCESSING [J].
BELL, E ;
MALMBERG, RL .
MOLECULAR & GENERAL GENETICS, 1990, 224 (03) :431-436
[6]   INCREASED PRODUCTION OF SEROTONIN BY SUSPENSION AND ROOT CULTURES OF PEGANUM-HARMALA TRANSFORMED WITH A TRYPTOPHAN DECARBOXYLASE CDNA CLONE FROM CATHARANTHUS-ROSEUS [J].
BERLIN, J ;
RUGENHAGEN, C ;
DIETZE, P ;
FECKER, LF ;
GODDIJN, OJM ;
HOGE, JHC .
TRANSGENIC RESEARCH, 1993, 2 (06) :336-344
[7]   Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus [J].
Canel, C ;
Lopes-Cardoso, MI ;
Whitmer, S ;
van der Fits, L ;
Pasquali, G ;
van der Heijden, R ;
Hoge, JHC ;
Verpoorte, R .
PLANTA, 1998, 205 (03) :414-419
[8]   L-Deoxy-D-xylulose 5-phosphate synthase from periwinkle:: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells [J].
Chahed, K ;
Oudin, A ;
Guivarc'h, N ;
Hamdi, S ;
Chénieux, JC ;
Rideau, M ;
Clastre, M .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2000, 38 (7-8) :559-566
[9]   REDIRECTION OF TRYPTOPHAN LEADS TO PRODUCTION OF LOW INDOLE GLUCOSINOLATE CANOLA [J].
CHAVADEJ, S ;
BRISSON, N ;
MCNEIL, JN ;
DELUCA, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (06) :2166-2170
[10]   The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture [J].
Contin, A ;
van der Heijden, R ;
Lefeber, AWM ;
Verpoorte, R .
FEBS LETTERS, 1998, 434 (03) :413-416