Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule

被引:233
作者
Weinhold, B
Seidenfaden, R
Röckle, I
Mühlenhoff, M
Schertzinger, F
Conzelmann, S
Marth, JD
Gerardy-Schahn, R
Hildebrandt, H
机构
[1] Hannover Med Sch, Zentrum Biochem, D-30625 Hannover, Germany
[2] Univ Hohenheim, Inst Zool, D-70593 Stuttgart, Germany
[3] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
关键词
D O I
10.1074/jbc.M511097200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Poly-alpha 2,8-sialic acid (polySia) is a unique modification of the neural cell adhesion molecule, NCAM, tightly associated with neural development and plasticity. However, the vital role attributed to this carbohydrate polymer has been challenged by the mild phenotype of mice lacking polySia due to NCAM-deficiency. To dissect polySia and NCAM functions, we generated polySia-negative but NCAM-positive mice by simultaneous deletion of the two polysialyltransferase genes, St8sia-II and St8sia-IV. Beyond features shared with NCAM-null animals, a severe phenotype with specific brain wiring defects, progressive hydrocephalus, postnatal growth retardation, and precocious death was observed. These drastic defects were selectively rescued by additional deletion of NCAM, demonstrating that they originate from a gain of NCAM functions because of polySia deficiency. The data presented in this study reveal that the essential role of polySia resides in the control and coordination of NCAM interactions during mouse brain development. Moreover, this first demonstration in vivo that a highly specific glycan structure is more important than the glycoconjugate as a whole provides a novel view on the relevance of protein glycosylation for the complex process of building the vertebrate brain.
引用
收藏
页码:42971 / 42977
页数:7
相关论文
共 47 条
[1]   Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule [J].
Angata, K ;
Fukuda, M .
BIOCHIMIE, 2003, 85 (1-2) :195-206
[2]   Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior [J].
Angata, K ;
Long, JM ;
Bukalo, O ;
Lee, W ;
Dityatev, A ;
Wynshaw-Boris, A ;
Schachner, M ;
Fukuda, M ;
Marth, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (31) :32603-32613
[3]   Mutation in the phosphorylation sites of MAP kinase blocks learning-related internalization of apCAM in Aplysia sensory neurons [J].
Bailey, CH ;
Kaang, BK ;
Chen, M ;
Martin, KC ;
Lim, CS ;
Casadio, A ;
Kandel, ER .
NEURON, 1997, 18 (06) :913-924
[4]  
Becker CG, 1996, J NEUROSCI RES, V45, P143, DOI 10.1002/(SICI)1097-4547(19960715)45:2<143::AID-JNR6>3.3.CO
[5]  
2-Y
[6]  
Chazal G, 2000, J NEUROSCI, V20, P1446
[7]   INACTIVATION OF THE N-CAM GENE IN MICE RESULTS IN SIZE-REDUCTION OF THE OLFACTORY-BULB AND DEFICITS IN SPATIAL-LEARNING [J].
CREMER, H ;
LANGE, R ;
CHRISTOPH, A ;
PLOMANN, M ;
VOPPER, G ;
ROES, J ;
BROWN, R ;
BALDWIN, S ;
KRAEMER, P ;
SCHEFF, S ;
BARTHELS, D ;
RAJEWSKY, K ;
WILLE, W .
NATURE, 1994, 367 (6462) :455-459
[8]   NCAM is essential for axonal growth and fasciculation in the hippocampus [J].
Cremer, H ;
Chazal, G ;
Goridis, C ;
Represa, A .
MOLECULAR AND CELLULAR NEUROSCIENCE, 1997, 8 (05) :323-335
[9]   Disruption of the mouse L1 gene leads to malformations of the nervous system [J].
Dahme, M ;
Bartsch, U ;
Martini, R ;
Anliker, B ;
Schachner, M ;
Mantei, N .
NATURE GENETICS, 1997, 17 (03) :346-349
[10]  
Demyanenko GP, 1999, J NEUROSCI, V19, P4907