Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems

被引:54
作者
Haller, G
Wiggins, S
机构
[1] CALTECH, DEPT APPL MATH, PASADENA, CA 91125 USA
[2] CALTECH, DEPT CONTROL & DYNAM SYST 10444, PASADENA, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(95)00247-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the dynamics near resonant elliptic equilibria in three-degree-of-freedom Hamiltonian systems. The resonances we consider have multiplicity two, and the corresponding local normal form for the equilibrium is integrable at cubic order. We prove the existence of families of 3-tori and whiskered 2-tori with nearby chaotic dynamics in the quartic normal form, The whiskers of the 2-tori intersect in a non-trivial way giving rise to multi-pulse homoclinic and heteroclinic connections. These connections survive in the full system as orbits homoclinic to invariant 3-spheres.
引用
收藏
页码:319 / 365
页数:47
相关论文
共 64 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]  
[Anonymous], DIFFERENTIAL COMBINA
[3]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[4]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P91, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[5]  
ARNOLD VI, 1988, DYNAMICAL SYSTEMS, V3
[6]  
Arnold VI, 1964, SOV MATH DOKL, V5, P581
[7]   STABILITY OF MOTIONS NEAR RESONANCES IN QUASI-INTEGRABLE HAMILTONIAN-SYSTEMS [J].
BENETTIN, G ;
GALLAVOTTI, G .
JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (3-4) :293-338
[8]  
CHIERCHIA L, 1994, ANN I H POINCARE-PHY, V60, P1
[9]   ON AVERAGING, REDUCTION, AND SYMMETRY IN HAMILTONIAN-SYSTEMS [J].
CHURCHILL, RC ;
KUMMER, M ;
ROD, DL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 49 (03) :359-414
[10]  
CHURCHILL RC, 1979, LECTURE NOTES PHYSIC, V93