Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae)

被引:234
作者
Li, M
Hu, CW
Zhu, Q
Chen, L
Kong, ZM
Liu, ZL
机构
[1] Nanjing Univ, Sch Environm, Nanjing 210093, Jiangsu Prov, Peoples R China
[2] Nanjing Univ, Dept Biol, Nanjing 210093, Jiangsu Prov, Peoples R China
关键词
antioxidant enzymes; copper; glutathione; malondialdehyde; Pavlova viridis; zinc;
D O I
10.1016/j.chemosphere.2005.06.029
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The metal-induced lipid peroxidation and response of antioxidative enzymes have been investigated in the marine microalga Pavlova viridis to understand the mechanisms of metal resistance in algal cells. We have analyzed superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) activities and glutathione (GSH) contents in microalgal cells grown at different concentrations of copper and zinc. In response to each metal, lipid peroxidation was enhanced with the increase of concentrations, as an indication of the oxidative damage caused by metal concentration assayed in the microalgae cells. Exposure of P. viridis to the two metals caused changes in enzyme activities in a different manner, depending on the metal assayed: after copper treatments, total SOD activity was enhanced, while it was reduced after zinc exposure. Copper and zinc stimulated the activities of CAT and GSH whereas GPX showed a remarkable increase in activity in response to copper treatments and decrease after zinc treatments. These results suggest that an activation of some antioxidant enzymes was enhanced to counteract the oxidative stress induced by the two metals. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:565 / 572
页数:8
相关论文
共 37 条
[1]   DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS [J].
ALLEN, RD .
PLANT PHYSIOLOGY, 1995, 107 (04) :1049-1054
[2]  
Arora A, 2002, CURR SCI INDIA, V82, P1227
[3]  
AUST S D, 1985, Journal of Free Radicals in Biology and Medicine, V1, P3, DOI 10.1016/0748-5514(85)90025-X
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]  
CHANG C, 1993, B ENVIRON CONTAM TOX, V50, P689
[6]   Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L) [J].
Chaoui, A ;
Mazhoudi, S ;
Ghorbal, MH ;
ElFerjani, E .
PLANT SCIENCE, 1997, 127 (02) :139-147
[7]   BIOCHEMICAL, PHYSIOLOGICAL, AND STRUCTURAL EFFECTS OF EXCESS COPPER IN PLANTS [J].
FERNANDES, JC ;
HENRIQUES, FS .
BOTANICAL REVIEW, 1991, 57 (03) :246-273
[8]   STUDIES OF MARINE PLANKTONIC DIATOMS .1. CYCLOTELLA NANA HUSTEDT, AND DETONULA CONFERVACEA (CLEVE) GRAN [J].
GUILLARD, RR ;
RYTHER, JH .
CANADIAN JOURNAL OF MICROBIOLOGY, 1962, 8 (02) :229-&
[9]   PHOTOPEROXIDATION IN ISOLATED CHLOROPLASTS .I. KINETICS AND STOICHIOMETRY OF FATTY ACID PEROXIDATION [J].
HEATH, RL ;
PACKER, L .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1968, 125 (01) :189-&
[10]   NEW SPECTROPHOTOMETRIC EQUATIONS FOR DETERMINING CHLOROPHYLLS A, B, C1 AND C2 IN HIGHER-PLANTS, ALGAE AND NATURAL PHYTOPLANKTON [J].
JEFFREY, SW ;
HUMPHREY, GF .
BIOCHEMIE UND PHYSIOLOGIE DER PFLANZEN, 1975, 167 (02) :191-194