Determinant of the Laplacian on a non-compact three-dimensional hyperbolic manifold with finite volume

被引:9
作者
Bytsenko, AA
Cognola, G
Zerbini, S
机构
[1] UNIV TRENT,DIPARTIMENTO FIS,I-38050 TRENT,ITALY
[2] GRP COLL TRENTO,IST NAZL FIS NUCL,TRENT,ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 10期
关键词
RIEMANN SURFACES; ZETA-FUNCTIONS; VACUUM ENERGY; SPATIAL PART; SPACE-TIME; GEOMETRY; FORMS;
D O I
10.1088/0305-4470/30/10/028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The functional determinant of Laplace-type operators on a three-dimensional non-compact hyperbolic manifold with invariant fundamental domain of finite volume is expressed via the Selberg zeta function related to the Picard group SL(2, Z + iZ)/{+/-Id}.
引用
收藏
页码:3543 / 3552
页数:10
相关论文
共 29 条
[1]   DETERMINANTS OF LAPLACE-LIKE OPERATORS ON RIEMANN SURFACES [J].
BOLTE, J ;
STEINER, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (03) :581-597
[2]   SELF-INTERACTING SCALAR FIELDS ON SPACE-TIME WITH COMPACT HYPERBOLIC SPATIAL PART [J].
BYTSENKO, A ;
KIRSTEN, K ;
ODINTSOV, S .
MODERN PHYSICS LETTERS A, 1993, 8 (21) :2011-2021
[3]   THE CONFORMAL ANOMALY IN N-DIMENSIONAL SPACES HAVING A HYPERBOLIC SPATIAL SECTION [J].
BYTSENKO, AA ;
ELIZALDE, E ;
ODINTSOV, SD .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) :5084-5090
[4]   Quantum fields and extended objects in space-times with constant curvature spatial section [J].
Bytsenko, AA ;
Cognola, G ;
Vanzo, L ;
Zerbini, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 266 (1-2) :1-126
[5]   VACUUM ENERGY FOR 3+1 DIMENSIONAL SPACE-TIME WITH COMPACT HYPERBOLIC SPATIAL PART [J].
BYTSENKO, AA ;
COGNOLA, G ;
VANZO, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (09) :3108-3111
[6]  
BYTSENKO AA, 1996, IN PRESS CLASS QUANT
[7]  
BYTSENKO AA, 1993, J MATH PHYS, V34, P1614
[8]   HARMONIC-ANALYSIS AND PROPAGATORS ON HOMOGENEOUS SPACES [J].
CAMPORESI, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 196 (1-2) :1-134
[9]   VACUUM ENERGY ON ORBIFOLD FACTORS OF SPHERES [J].
CHANG, P ;
DOWKER, JS .
NUCLEAR PHYSICS B, 1993, 395 (1-2) :407-432
[10]   THE GEOMETRY OF STRING PERTURBATION-THEORY [J].
DHOKER, E ;
PHONG, DH .
REVIEWS OF MODERN PHYSICS, 1988, 60 (04) :917-1065