Stabilizing Nanostructured Solid Oxide Fuel Cell Cathode with Atomic Layer Deposition

被引:148
作者
Gong, Yunhui [1 ]
Palacio, Diego [2 ]
Song, Xueyan [2 ]
Patel, Rajankumar L. [3 ]
Liang, Xinhua [3 ]
Zhao, Xuan [1 ]
Goodenough, John B. [4 ]
Huang, Kevin [1 ]
机构
[1] Univ S Carolina, Dept Mech Engn, Columbia, SC 29201 USA
[2] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[3] Missouri Univ Sci & Technol, Dept Chem & Biol Engn, Rolla, MO 65409 USA
[4] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
Solid oxide fuel cell; atomic layer deposition; cathode; degradation; YSZ CATHODE; THIN-FILMS; SURFACE; PERFORMANCE; OXYGEN; DEGRADATION; REDUCTION; INFILTRATION; ELECTRODES; MEMBRANES;
D O I
10.1021/nl402138w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-delta (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 degrees C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O-2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.
引用
收藏
页码:4340 / 4345
页数:6
相关论文
共 43 条
[1]   Chemical Heterogeneities on La0.6Sr0.4CoO3-δ Thin Films-Correlations to Cathode Surface Activity and Stability [J].
Cai, Zhuhua ;
Kubicek, Markus ;
Fleig, Juergen ;
Yildiz, Bilge .
CHEMISTRY OF MATERIALS, 2012, 24 (06) :1116-1127
[2]   Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes [J].
Caillol, N. ;
Pijolat, M. ;
Siebert, E. .
APPLIED SURFACE SCIENCE, 2007, 253 (10) :4641-4648
[3]   Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes:: Pore reduction and effect of surface species on gas transport [J].
Cameron, MA ;
Gartland, IP ;
Smith, JA ;
Diaz, SF ;
George, SM .
LANGMUIR, 2000, 16 (19) :7435-7444
[4]   Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells [J].
Crumlin, Ethan J. ;
Mutoro, Eva ;
Liu, Zhi ;
Grass, Michael E. ;
Biegalski, Michael D. ;
Lee, Yueh-Lin ;
Morgan, Dane ;
Christen, Hans M. ;
Bluhm, Hendrik ;
Shao-Horn, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) :6081-6088
[5]   Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells [J].
Crumlin, Ethan J. ;
Mutoro, Eva ;
Ahn, Sung-Jin ;
la O', Gerardo Jose ;
Leonard, Donovan N. ;
Borisevich, Albina ;
Biegalski, Michael D. ;
Christen, Hans M. ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (21) :3149-3155
[6]   SURFACE-CHEMISTRY OF AL2O3 DEPOSITION USING AL(CH3)(3) AND H2O IN A BINARY REACTION SEQUENCE [J].
DILLON, AC ;
OTT, AW ;
WAY, JD ;
GEORGE, SM .
SURFACE SCIENCE, 1995, 322 (1-3) :230-242
[7]   ALD for clean energy conversion, utilization, and storage [J].
Elam, Jeffrey W. ;
Dasgupta, Neil P. ;
Prinz, Fritz B. .
MRS BULLETIN, 2011, 36 (11) :899-906
[8]   Atomic layer deposition of SiO2 films on BN particles using sequential surface reactions [J].
Ferguson, JD ;
Weimer, AW ;
George, SM .
CHEMISTRY OF MATERIALS, 2000, 12 (11) :3472-3480
[9]   Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles [J].
Ferguson, JD ;
Weimer, AW ;
George, SM .
THIN SOLID FILMS, 2000, 371 (1-2) :95-104
[10]   Electrochemically driven cation segregation in the mixed conductor La0.6Sr0.4Co0.2Fe0.8O3-δ [J].
Finsterbusch, M. ;
Lussier, A. ;
Schaefer, J. A. ;
Idzerda, Y. U. .
SOLID STATE IONICS, 2012, 212 :77-80