A semi-smooth Newton method for elasto-plastic contact problems

被引:38
作者
Christensen, PW [1 ]
机构
[1] Linkoping Univ, Dept Engn Mech, SE-58183 Linkoping, Sweden
关键词
frictional contact; elasto-plasticity; semi-smooth equations; Newton method; radial return;
D O I
10.1016/S0020-7683(02)00086-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we reformulate the frictional contact problem for elasto-plastic bodies as a set of unconstrained, non-smooth equations. The equations are semi-smooth so that Pang's Newton method for B-differentiable equations can be applied. An algorithm based on this method is described in detail. An example demonstrating the efficiency of the algorithm is presented. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2323 / 2341
页数:19
相关论文
共 20 条
[1]  
Anderson E., 1995, LAPACK USERS GUIDE
[2]   PIECEWISE CK FUNCTIONS IN NONSMOOTH ANALYSIS [J].
CHANEY, RW .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (07) :649-660
[3]  
CHRISTENSEN P, 2000, UNPUB MUSOLVE FINITE
[4]  
Christensen PW, 1998, INT J NUMER METH ENG, V42, P145, DOI 10.1002/(SICI)1097-0207(19980515)42:1<145::AID-NME358>3.0.CO
[5]  
2-L
[6]   A nonsmooth Newton method for elastoplastic problems [J].
Christensen, PW .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (11-12) :1189-1219
[7]  
CHRISTENSEN PW, 1998, REFORMULATION NONSMO, P81
[8]  
ENDAHL N, 1985, LINKOPING STUDIES SC
[9]  
FELIPPA CA, 1975, J COMPUTERS STRUCTUR, V5, P13
[10]  
Hiriart-Urruty J-B., 1993, CONVEX ANAL MINIMIZA