A projected gradient algorithm for solving the maxcut SDP relaxation

被引:51
作者
Burer, S
Monteiro, RDC
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
semidefinite programming; maxcut; approximation algorithm; semidefinite relaxation; projected gradient method;
D O I
10.1080/10556780108805818
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present a projected gradient algorithm for solving the semidefinite programming (SDP) relaxation of the maximum cut (maxcut) problem. Coupled with a randomized method, this gives a very efficient approximation algorithm for the maxcut problem. We report computational results comparing our method with two earlier successful methods on problems with dimension up to 7,000.
引用
收藏
页码:175 / 200
页数:26
相关论文
共 23 条
[1]   INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION [J].
ALIZADEH, F .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) :13-51
[2]   AN APPLICATION OF COMBINATORIAL OPTIMIZATION TO STATISTICAL PHYSICS AND CIRCUIT LAYOUT DESIGN [J].
BARAHONA, F ;
GROTSCHEL, M ;
JUNGER, M ;
REINELT, G .
OPERATIONS RESEARCH, 1988, 36 (03) :493-513
[3]  
BENSON S, IN PRESS SIAM J OPTI
[4]   EFFICIENT ALGORITHMS FOR LAYER ASSIGNMENT PROBLEM [J].
CHANG, KC ;
DU, DHC .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1987, 6 (01) :67-78
[5]  
CHEN RW, 1983, IEEE T CIRCUITS SYST, V30, P284, DOI 10.1109/TCS.1983.1085357
[6]  
FUJIE T, 1997, J GLOBAL OPTIM, V10, P168
[7]   Exploiting sparsity in primal-dual interior-point methods for semidefinite programming [J].
Fujisawa, K ;
Kojima, M ;
Nakata, K .
MATHEMATICAL PROGRAMMING, 1997, 79 (1-3) :235-253
[8]  
FUJISAWA K, 1999, HIGH PERFORMANCE OPT, P267
[9]  
GOEMANS MX, 1995, J ACM, V1115, P42
[10]  
GOLUB GH, 1989, MATRIX COMPUTATIONS, P21211