We found that intraperitoneal injection of organic acids, such as propionic and lactic acid, are able to develop writhing responses in mice similarly as that of acetic acid. These acid-induced writhing reactions were significantly attenuated by capsazepine, a VR1 receptor-specific antagonist, but the phenylbenzoquinone-induced one was not, suggesting that the acids but not phenylbenzoquinone activate the VRI receptor, which is involved in polymodal pain perception. Hoe 140, a bradykinin B-2 receptor antagonist, also suppressed the acid-induced writhing response. Furthermore, these writhing responses were significantly suppressed after neonatal treatment with capsaicin, which treatment is known to destroy peripheral sensory afferent C-fibers. Capsazepine and Hoe 140 did not further attenuate the already reduced writhing responses of capsaicin-treated mice, suggesting that the acids stimulate the VRI and the bradykinin B2 receptor in the pathway comprising sensory afferent C-fibers. On the other hand, indomethacin further significantly suppressed the writhing number of the capsaicin-treated animals, suggesting that the acid-induced pain perception requires prostanoid receptors not only in the pathway via capsaicin-sensitive C-fibers but also in other sensory pathways. These results provide the first evidence for the involvement of the vanilloid receptor in the acid-induced inflammatory pain perception via sensory C-fibers in addition to the known mediators bradykinin, neurokinins, and prostanoids. (C) 2001 Elsevier Science Inc. All rights reserved.