In situ measurement of activity and mass transfer effects in enzyme immobilized electrodes

被引:9
作者
Johnston, Wayne [1 ]
Maynard, Nathan [1 ]
Liaw, Bor Yann [1 ]
Cooney, Michael J. [1 ]
机构
[1] Univ Hawaii Manoa, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA
关键词
enzyme; alcohol dehydrogenase; electrode; mass transfer; activity; immobilization; polypyrrole;
D O I
10.1016/j.enzmictec.2005.10.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Enzyme catalyzed biofuel cells have been proposed as an alternative to transition metal catalysts for power generation as they oxidize alcohols at relatively low overpotential without the production of detrimental carbon monoxide, and are capable of operation at lower temperatures [Palmore GT, Bertschy H, Bergens SH, Whitesides GM. A methanol/dioxygen biofuel cell that uses NAD(+)-dependent dehydrogenase as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J Electroanal Chem 1998;443:155-61]. Additionally, the immobilization procedure prevents internal leakage or cross-contamination of electron mediators. However, full realization of the membrane-less biofuel cell as a power source requires a three-dimensional boundary structure which balances the overall effective surface area against porosity, thus ensuring the maximum number of catalyst sites are available without suffering the blockage of fuel transport, which occurs if the pore size is too small. In this work, a simple and in situ method using a simplified diffusion model is presented to estimate the total activity immobilized enzyme in the absence of mass transfer effects. The method, which also calculates a combined mass transfer parameter including an effective diffusion coefficient, models the reactant concentration at the enzyme surface using bulk concentrations which then can be measured in situ by spectrophotometric detection or ex situ by HPLC analysis. The method was then applied to evaluate two methods of alcohol dehydrogenase electrode fabrication: direct adsorption to carbon felt and entrapment within the conductive polymer polypyrrole. Results showed that direct adsorption provided 26 times the activity versus the method of direct entrapment and better mass transfer characteristics. Correlation of these results to scanning electron micrographs suggested that the polypyrrole entrapment method lacked the expected diffusive pathways and most likely expelled enzyme during growth of the film. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 60 条
[1]   POLYPYRROLE-BASED POTENTIOMETRIC BIOSENSOR FOR UREA .2. ANALYTICAL OPTIMIZATION [J].
ADELOJU, SB ;
SHAW, SJ ;
WALLACE, GG .
ANALYTICA CHIMICA ACTA, 1993, 281 (03) :621-627
[2]   Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell [J].
Barrière, F ;
Ferry, Y ;
Rochefort, D ;
Leech, D .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (03) :237-241
[3]   ELECTROCHEMICAL IMMOBILIZATION OF ENZYMES .2. GLUCOSE-OXIDASE IMMOBILIZED IN POLY-N-METHYLPYRROLE [J].
BARTLETT, PN ;
WHITAKER, RG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 224 (1-2) :37-48
[4]   THE APPLICATION OF CONDUCTING POLYMERS IN BIOSENSORS [J].
BARTLETT, PN ;
BIRKIN, PR .
SYNTHETIC METALS, 1993, 61 (1-2) :15-21
[5]  
BARTLETT PN, 1993, J ELECTROANAL CHEM, V362, P1
[6]   Electroreduction of O2 to water at 0.6 V (SHE) at pH 7 on the 'wired' Pleurotus ostreatus laccase cathode [J].
Barton, SC ;
Pickard, M ;
Vazquez-Duhalt, R ;
Heller, A .
BIOSENSORS & BIOELECTRONICS, 2002, 17 (11-12) :1071-1074
[7]   ELECTROCHEMISTRY OF THE POLYPYRROLE GLUCOSE-OXIDASE ELECTRODE [J].
BELANGER, D ;
NADREAU, J ;
FORTIER, G .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1989, 274 (1-2) :143-155
[8]  
Bianco Pierre, 2002, J Biotechnol, V82, P393, DOI 10.1016/S1389-0352(01)00054-X
[9]   ELECTROCONDUCTING CONJUGATED POLYMERS - NEW SENSITIVE MATRICES TO BUILD UP CHEMICAL OR ELECTROCHEMICAL SENSORS - A REVIEW [J].
BIDAN, G .
SENSORS AND ACTUATORS B-CHEMICAL, 1992, 6 (1-3) :45-56
[10]   Electrocatalytic activity of ordered intermetallic phases for fuel cell applications [J].
Casado-Rivera, E ;
Volpe, DJ ;
Alden, L ;
Lind, C ;
Downie, C ;
Vázquez-Alvarez, T ;
Angelo, ACD ;
DiSalvo, FJ ;
Abruña, HD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (12) :4043-4049