Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning

被引:271
作者
Jones, Thouis R. [1 ,2 ,3 ]
Carpenter, Anne E. [1 ,2 ]
Lamprecht, Michael R. [2 ]
Moffat, Jason [2 ]
Silver, Serena J. [1 ]
Grenier, Jennifer K. [1 ]
Castoreno, Adam B. [4 ,5 ]
Eggert, Ulrike S. [4 ,5 ]
Root, David E. [1 ]
Golland, Polina [3 ]
Sabatini, David M. [1 ,2 ,6 ]
机构
[1] MIT & Harvard, Broad Inst, Cambridge Ctr 7, Cambridge, MA 02142 USA
[2] MIT, Whitehead Inst Biomed Res, Cambridge Ctr 9, Cambridge, MA 02142 USA
[3] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[4] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[6] MIT, Dept Biol, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
high-content screening; high-throughput image analysis; phenotype; SUBCELLULAR STRUCTURES; HUMAN-CELLS; MUTATIONS; PATTERNS; CYCLE; RECOGNITION; MICROSCOPY; DROSOPHILA; ZEBRAFISH; GENES;
D O I
10.1073/pnas.0808843106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many biological pathways were first uncovered by identifying mutants with visible phenotypes and by scoring every sample in a screen via tedious and subjective visual inspection. Now, automated image analysis can effectively score many phenotypes. In practical application, customizing an image-analysis algorithm or finding a sufficient number of example cells to train a machine learning algorithm can be infeasible, particularly when positive control samples are not available and the phenotype of interest is rare. Here we present a supervised machine learning approach that uses iterative feedback to readily score multiple subtle and complex morphological phenotypes in high-throughput, image-based screens. First, automated cytological profiling extracts hundreds of numerical descriptors for every cell in every image. Next, the researcher generates a rule (i.e., classifier) to recognize cells with a phenotype of interest during a short, interactive training session using iterative feedback. Finally, all of the cells in the experiment are automatically classified and each sample is scored based on the presence of cells displaying the phenotype. By using this approach, we successfully scored images in RNA interference screens in 2 organisms for the prevalence of 15 diverse cellular morphologies, some of which were previously intractable.
引用
收藏
页码:1826 / 1831
页数:6
相关论文
共 36 条
[1]   Compound classification using image-based cellular phenotypes [J].
Adams, Cynthia L. ;
Kutsyy, Vadim ;
Coleman, Daniel A. ;
Cong, Ge ;
Crompton, Anne Moon ;
Elias, Kathleen A. ;
Oestreicher, Donald R. ;
Trautman, Jay K. ;
Vaisberg, Eugeni .
MEASURING BIOLOGICAL RESPONSES WITH AUTOMATED MICROSCOPY, 2006, 414 :440-468
[2]   Quantitative morphological signatures define local signaling networks regulating cell morphology [J].
Bakal, Chris ;
Aach, John ;
Church, George ;
Perrimon, Norbert .
SCIENCE, 2007, 316 (5832) :1753-1756
[3]  
Boland MV, 1998, CYTOMETRY, V33, P366
[4]   A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells [J].
Boland, MV ;
Murphy, RF .
BIOINFORMATICS, 2001, 17 (12) :1213-1223
[5]  
BRENNER S, 1974, GENETICS, V77, P71
[6]   Systematic genome-wide screens of gene function [J].
Carpenter, AE ;
Sabatini, DM .
NATURE REVIEWS GENETICS, 2004, 5 (01) :11-22
[7]   Image-based chemical screening [J].
Carpenter, Anne E. .
NATURE CHEMICAL BIOLOGY, 2007, 3 (08) :461-465
[8]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[9]   Automated interpretation of protein subcellular location patterns [J].
Chen, Xiang ;
Murphy, Robert F. .
INTERNATIONAL REVIEW OF CYTOLOGY - A SURVEY OF CELL BIOLOGY, VOL 249, 2006, 249 :193-+
[10]  
Driever W, 1996, DEVELOPMENT, V123, P37