Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry

被引:62
作者
Cheng, Guilong [2 ]
Basha, Eman [1 ]
Wysocki, Vicki H. [1 ,2 ]
Vierling, Elizabeth [1 ]
机构
[1] Univ Arizona, Dept Biochem & Mol Biophys, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1074/jbc.M802946200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Small heat shock proteins (sHSPs) and the related alpha-crystallins are ubiquitous chaperones linked to neurodegenerative diseases, myopathies, and cataract. To better define their mechanism of chaperone action, we used hydrogen/deuterium exchange and mass spectrometry (HXMS) to monitor conformational changes during complex formation between the structurally defined sHSPs, pea PsHsp18.1, and wheat TaHsp16.9, and the heat-denatured model substrates malate dehydrogenase (MDH) and firefly luciferase. Remarkably, we found that even when complexed with substrate, the highly dynamic local structure of the sHSPs, especially in the N-terminal arm (> 70% exchange in 5 s), remains unchanged. These results, coupled with sHSP-substrate complex stability, indicate that sHSPs do not adopt new secondary structure when binding substrate and suggest sHSPs are tethered to substrate at multiple sites that are locally dynamic, a feature that likely facilitates recognition and refolding of sHSP-bound substrate by the Hsp70/DnaK chaperone system. Both substrates were found to be stabilized in a partially unfolded state that is observed only in the presence of sHSP. Furthermore, peptide-level HXMS showed MDH was substantially protected in two core regions (residues 95-156 and 228-252), which overlap with the MDH structure protected in the GroEL-bound MDH refolding intermediate. Significantly, despite differences in the size and structure of TaHsp16.9-MDH and PsHsp18.1-MDH complexes, peptide-level HXMS patterns for MDH in both complexes are virtually identical, indicating that stabilized MDH thermal unfolding intermediates are not determined by the identity of the sHSP.
引用
收藏
页码:26634 / 26642
页数:9
相关论文
共 50 条
[1]   The N-terminal domain of αB-crystallin is protected from proteolysis by bound substrate [J].
Aquilina, J. Andrew ;
Watt, Stephen J. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 353 (04) :1115-1120
[2]  
Arrigo AP, 2007, ADV EXP MED BIOL, V594, P14
[3]   PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01) :75-86
[4]   Chaperone activity of cytosolic small heat shock proteins from wheat [J].
Basha, E ;
Lee, GJ ;
Demeler, B ;
Vierling, E .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2004, 271 (08) :1426-1436
[5]   The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity [J].
Basha, Eman ;
Friedrich, Kenneth L. ;
Vierling, Elizabeth .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (52) :39943-39952
[6]   Small heat shock proteins Hsp27 or αB-crystallin and the protein components of neurofibrillary tangles:: Tau and neurofilaments [J].
Bjorkdahl, Cecilia ;
Sjogren, Magnus J. ;
Zhou, Xinwen ;
Concha, Hernan ;
Avila, Jesus ;
Winblad, Bengt ;
Pei, Jin-Jing .
JOURNAL OF NEUROSCIENCE RESEARCH, 2008, 86 (06) :1343-1352
[7]   Subunit exchange of small heat shock proteins -: Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations [J].
Bova, MP ;
Mchaourab, HS ;
Han, Y ;
Fung, BKK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :1035-1042
[8]   Subunit exchange of alpha A-crystallin [J].
Bova, MP ;
Ding, LL ;
Horwitz, J ;
Fung, BKK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (47) :29511-29517
[9]   Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin [J].
Brady, JP ;
Garland, D ;
DuglasTabor, Y ;
Robison, WG ;
Groome, A ;
Wawrousek, EF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (03) :884-889
[10]   Molecular recycling within amyloid fibrils [J].
Carulla, N ;
Caddy, GL ;
Hall, DR ;
Zurdo, J ;
Gairí, M ;
Feliz, M ;
Giralt, E ;
Robinson, CV ;
Dobson, CM .
NATURE, 2005, 436 (7050) :554-558