Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors

被引:175
作者
Memarzadeh, Milad [1 ]
Golparvar-Fard, Mani [2 ]
Carlos Niebles, Juan [3 ]
机构
[1] Virginia Tech, Vecellio Construct Engn & Management, Blacksburg, VA USA
[2] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
[3] Univ Norte, Barranquilla, Colombia
关键词
Histogram of oriented gradients; Support vector machine; HSV colors; Resource tracking; Performance monitoring; PROJECT PERFORMANCE CONTROL; TRACKING;
D O I
10.1016/j.autcon.2012.12.002
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a computer vision based algorithm for automated 2D detection of construction workers and equipment from site video streams. The state-of-the-art research proposes semi-automated detection methods for tracking of construction workers and equipment. Considering the number of active equipment and workers on jobsites and their frequency of appearance in a camera's field of view, application of semi-automated techniques can be time-consuming. To address this limitation, a new algorithm based on Histograms of Oriented Gradients and Colors (HOG + C) is proposed. Our proposed detector uses a single sliding window at multiple scales to identify the potential candidates for the location of equipment and workers in 2D. Each detection window is first divided into small spatial regions and then the gradient orientations and hue-saturation colors are locally histogrammed and concatenated to form the HOG + C descriptors. Tiling the sliding detection window with a dense and overlapping grid of formed descriptors and using a binary Support Vector Machine (SVM) classifier for each resource enables automated 20 detection of workers and equipment. A new comprehensive benchmark dataset containing over 8000 annotated video frames including equipment and workers from different construction projects is introduced. This dataset contains a large range of pose, scale, background, illumination, and occlusion variation. Our preliminary results on detection of standing workers, excavators and dump trucks with an average accuracy of 98.83%, 82.10%, and 84.88% respectively indicate the applicability of the proposed method for automated activity analysis of workers and equipment from single video cameras. Unlike other state-of-the-art algorithms in automated resource tracking, this method particularly detects idle resources and does not need manual or semi-automated initialization of the resource locations in 2D video frames. The experimental results and the perceived benefits of the proposed method are discussed in detail. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 37
页数:14
相关论文
共 45 条
  • [1] [Anonymous], P 21 INT S AUT ROB C
  • [2] [Anonymous], 2005, PROC CVPR IEEE
  • [3] [Anonymous], 2009, INT WORKSH COMP CIV
  • [4] [Anonymous], 2011, C COMPUT CIV ENG P, DOI DOI 10.1061/41182(416)32
  • [5] [Anonymous], THESIS I NATL POLYTE
  • [6] [Anonymous], 1997, P EUR 97 RHOD GREEC
  • [7] Automated Visual Recognition of Dump Trucks in Construction Videos
    Azar, Ehsan Rezazadeh
    McCabe, Brenda
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2012, 26 (06) : 769 - 781
  • [8] SURF: Speeded up robust features
    Bay, Herbert
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 404 - 417
  • [9] Automated vision tracking of project related entities
    Brilakis, Ioannis
    Park, Man-Woo
    Jog, Gauri
    [J]. ADVANCED ENGINEERING INFORMATICS, 2011, 25 (04) : 713 - 724
  • [10] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167