Horseshoe chaos in cellular neural networks

被引:31
作者
Yang, XS [1 ]
Li, QD
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
[2] Chongqing Univ Posts & Telecomm, Inst Nonlinear Syst, Chongqing 400065, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2006年 / 16卷 / 01期
关键词
chaos; Poincare map; horseshoe; cellular neural networks;
D O I
10.1142/S0218127406014666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we demonstrate chaos in low dimensional cellular neural networks for some weight matrices. To verify chaoticity of the dynamics in these cellular neural networks, we consider a cross-section properly chosen for the attractors obtained and study the dynamics of the corresponding Poincare maps, and rigorously verify the existence of horseshoe in the manner of coin puter-assisted proof arguments.
引用
收藏
页码:157 / 161
页数:5
相关论文
共 14 条
[1]   Brain chaos and computation [J].
Babloyantz, A ;
Lourenco, C .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1996, 7 (04) :461-471
[2]   CONTROL OF CHAOS IN DELAY-DIFFERENTIAL EQUATIONS, IN A NETWORK OF OSCILLATORS AND IN MODEL CORTEX [J].
BABLOYANTZ, A ;
LOURENCO, C ;
SEPULCHRE, JA .
PHYSICA D, 1995, 86 (1-2) :274-283
[3]   Chaos and asymptotical stability in discrete-time neural networks [J].
Chen, LN ;
Aihara, K .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 104 (3-4) :286-325
[4]  
Chua L., 2002, CELLULAR NETWORKS VI
[5]   Chaos in a three dimensional neural network [J].
Das, A ;
Roy, AB ;
Das, P .
APPLIED MATHEMATICAL MODELLING, 2000, 24 (07) :511-522
[6]   Chaos in a three-dimensional general model of neural network [J].
Das, A ;
Das, P ;
Roy, AB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10) :2271-2281
[7]   CHAOS IN AN EFFECTIVE 4-NEURON NEURAL NETWORK [J].
DAS, PK ;
SCHIEVE, WC ;
ZENG, ZJ .
PHYSICS LETTERS A, 1991, 161 (01) :60-66
[8]  
Freeman W. J., 1994, TEMPORAL CODING BRAI, P13, DOI [10.1007/978-3-642-85148-3_2, DOI 10.1007/978-3-642-85148-3_2]
[9]   CHAOS IN NEUROBIOLOGY [J].
GUEVARA, MR ;
GLASS, L ;
MACKEY, MC ;
SHRIER, A .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05) :790-798
[10]  
Robinson C., 1995, Dynamical systems: stability, symbolic dynamics, and chaos