Giant spin Seebeck effect in a non-magnetic material

被引:164
作者
Jaworski, C. M. [1 ]
Myers, R. C. [2 ,3 ]
Johnston-Halperin, E. [3 ]
Heremans, J. P. [1 ,3 ]
机构
[1] Ohio State Univ, Dept Mech Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nature11221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The spin Seebeck effect is observed when a thermal gradient applied to a spin-polarized material leads to a spatially varying transverse spin current in an adjacent non-spin-polarized material, where it gets converted into a measurable voltage. It has been previously observed with a magnitude of microvolts per kelvin in magnetically ordered materials, ferromagnetic metals(1), semiconductors(2) and insulators(3). Here we describe a signal in a non-magnetic semiconductor (InSb) that has the hallmarks of being produced by the spin Seebeck effect, but is three orders of magnitude larger (millivolts per kelvin). We refer to the phenomenon that produces it as the giant spin Seebeck effect. Quantizing magnetic fields spin-polarize conduction electrons in semiconductors by means of Zeeman splitting, which spin-orbit coupling amplifies by a factor of similar to 25 in InSb. We propose that the giant spin Seebeck effect is mediated by phonon-electron drag, which changes the electrons' momentum and directly modifies the spin-splitting energy through spin-orbit interactions. Owing to the simultaneously strong phonon-electron drag and spin-orbit coupling in InSb, the magnitude of the giant spin Seebeck voltage is comparable to the largest known classical thermopower values.
引用
收藏
页码:210 / 213
页数:4
相关论文
共 19 条
[1]   Linear-response theory of spin Seebeck effect in ferromagnetic insulators [J].
Adachi, Hiroto ;
Ohe, Jun-ichiro ;
Takahashi, Saburo ;
Maekawa, Sadamichi .
PHYSICAL REVIEW B, 2011, 83 (09)
[2]   Gigantic enhancement of spin Seebeck effect by phonon drag [J].
Adachi, Hiroto ;
Uchida, Ken-ichi ;
Saitoh, Eiji ;
Ohe, Jun-ichiro ;
Takahashi, Saburo ;
Maekawa, Sadamichi .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[3]   Spin Seebeck effect in thin films of the Heusler compound Co2MnSi [J].
Bosu, S. ;
Sakuraba, Y. ;
Uchida, K. ;
Saito, K. ;
Ota, T. ;
Saitoh, E. ;
Takanashi, K. .
PHYSICAL REVIEW B, 2011, 83 (22)
[4]   SPIN-ORBIT COUPLING EFFECTS IN ZINC BLENDE STRUCTURES [J].
DRESSELHAUS, G .
PHYSICAL REVIEW, 1955, 100 (02) :580-586
[5]   Spin-Seebeck Effect: A Phonon Driven Spin Distribution [J].
Jaworski, C. M. ;
Yang, J. ;
Mack, S. ;
Awschalom, D. D. ;
Myers, R. C. ;
Heremans, J. P. .
PHYSICAL REVIEW LETTERS, 2011, 106 (18)
[6]  
Jaworski CM, 2010, NAT MATER, V9, P898, DOI [10.1038/nmat2860, 10.1038/NMAT2860]
[7]   Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling [J].
Le Breton, Jean-Christophe ;
Sharma, Sandeep ;
Saito, Hidekazu ;
Yuasa, Shinji ;
Jansen, Ron .
NATURE, 2011, 475 (7354) :82-85
[8]  
Madelung O, 1982, LANDOLT BORNSTEIN NU, V17
[9]  
PURI SM, 1964, PHYS REV A-GEN PHYS, V136, P1767
[10]   Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect [J].
Saitoh, E ;
Ueda, M ;
Miyajima, H ;
Tatara, G .
APPLIED PHYSICS LETTERS, 2006, 88 (18)