The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors

被引:122
作者
Wissmüller, S [1 ]
Kosian, T [1 ]
Wolf, M [1 ]
Finzsch, M [1 ]
Wegner, M [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Biochem, D-91054 Erlangen, Germany
关键词
D O I
10.1093/nar/gkl105
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sox proteins are widely believed to team up with other transcription factors as partner proteins to perform their many essential functions during development. In this study, yeast two-hybrid screens identified transcription factors as a major group of interacting proteins for Sox8 and Sox10. Interacting transcription factors were very similar for these two group E Sox proteins and included proteins with different types of DNA-binding domains, such as homeodomain proteins, zinc finger proteins, basic helix-loop-helix and leucine zipper proteins. In all cases analyzed, the interaction involved the DNA-binding domain of the transcription factor which directly contacted the C-terminal part of the high-mobility-group (HMG) domain. In particular, the C-terminal tail region behind helix 3 of the HMG domain was shown by mutagenesis to be essential for interaction and transcription factor recruitment. The HMG domain thus not only possesses DNA-binding and DNA-bending but also protein-interacting ability which may be equally important for the architectural function of Sox proteins on their target gene promoters.
引用
收藏
页码:1735 / 1744
页数:10
相关论文
共 44 条
[1]   The transcrintion factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6 [J].
Akiyama, H ;
Chaboissier, MC ;
Martin, JF ;
Schedl, A ;
de Crombrugghe, B .
GENES & DEVELOPMENT, 2002, 16 (21) :2813-2828
[2]   Functional interaction of beta-catenin with the transcription factor LEF-1 [J].
Behrens, J ;
vonKries, JP ;
Kuhl, M ;
Bruhn, L ;
Wedlich, D ;
Grosschedl, R ;
Birchmeier, W .
NATURE, 1996, 382 (6592) :638-642
[3]   Interaction among SOX10 PAX3 and MITF, three genes altered in Waardenburg syndrome [J].
Bondurand, N ;
Pingault, V ;
Goerich, DE ;
Lemort, N ;
Sock, E ;
Le Caignec, C ;
Wegner, M ;
Goossens, M .
HUMAN MOLECULAR GENETICS, 2000, 9 (13) :1907-1917
[4]   Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10 [J].
Bondurand, N ;
Girard, M ;
Pingault, V ;
Lemort, N ;
Dubourg, O ;
Goossens, M .
HUMAN MOLECULAR GENETICS, 2001, 10 (24) :2783-2795
[5]   Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators [J].
Bowles, J ;
Schepers, G ;
Koopman, P .
DEVELOPMENTAL BIOLOGY, 2000, 227 (02) :239-255
[6]   The transcription factor Sox10 is a key regulator of peripheral glial development [J].
Britsch, S ;
Goerich, DE ;
Riethmacher, D ;
Peirano, RI ;
Rossner, M ;
Nave, KA ;
Birchmeier, C ;
Wegner, M .
GENES & DEVELOPMENT, 2001, 15 (01) :66-78
[7]   Functional analysis of Sox8 and Sox9 during sex determination in the mouse [J].
Chaboissier, MC ;
Kobayashi, A ;
Vidal, VIP ;
Lützkendorf, S ;
van de Kant, HJG ;
Wegner, M ;
de Rooij, DG ;
Behringer, RR ;
Schedl, A .
DEVELOPMENT, 2004, 131 (09) :1891-1901
[8]   Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene [J].
De Santa Barbara, P ;
Bonneaud, N ;
Boizet, B ;
Desclozeaux, M ;
Moniot, B ;
Sudbeck, P ;
Scherer, G ;
Poulat, F ;
Berta, P .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6653-6665
[9]  
Ghislain J, 2002, DEVELOPMENT, V129, P155
[10]   Control of myelination in Schwann cells:: a Krox20 cis-regulatory element integrates Oct6, Brn2 and Sox10 activities [J].
Ghislain, J ;
Charnay, P .
EMBO REPORTS, 2006, 7 (01) :52-58