Supersymmetric quantum theory and non-commutative geometry

被引:47
作者
Fröhlich, J [1 ]
Grandjean, O
Recknagel, A
机构
[1] ETH Honggerberg, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
D O I
10.1007/s002200050608
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classical differential geometry can be encoded in spectral data, such as Connes' spectral triples, involving supersymmetry algebras. In this paper, we formulate non-commutative geometry in terms of supersymmetric spectral data. This leads to generalizations of Connes' non-commutative spin geometry encompassing noncommutative Riemannian, symplectic, complex-Hermitian and (Hyper-) Kahler,geometry. A general framework for non-commutative geometry is developed from the point of view of supersymmetry and illustrated in terms of examples. In particular, the noncommutative torus and the non-commutative 3-sphere are studied in some detail.
引用
收藏
页码:119 / 184
页数:66
相关论文
共 48 条
[1]   SUPERSYMMETRY AND THE ATIYAH-SINGER INDEX THEOREM [J].
ALVAREZGAUME, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (02) :161-173
[2]   GEOMETRICAL STRUCTURE AND ULTRAVIOLET FINITENESS IN THE SUPERSYMMETRIC SIGMA-MODEL [J].
ALVAREZGAUME, L ;
FREEDMAN, DZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (03) :443-451
[3]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[4]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[5]   Phase space reduction for star-products: An explicit construction for CPn [J].
Bordemann, M ;
Brischle, M ;
Emmrich, C ;
Waldmann, S .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (04) :357-371
[6]   NONPERTURBATIVE DEFORMATION QUANTIZATION OF CARTAN DOMAINS [J].
BORTHWICK, D ;
LESNIEWSKI, A ;
UPMEIER, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 113 (01) :153-176
[7]  
BORTHWICK D, 1993, J MATH PHYS, V343, P4817
[8]   THE GRAVITATIONAL SECTOR IN THE CONNES-LOTT FORMULATION OF THE STANDARD MODEL [J].
CHAMSEDDINE, AH ;
FROHLICH, J ;
GRANDJEAN, O .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6255-6275
[9]   GRAVITY IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) :205-217
[10]  
CHAMSEDDINE AH, 1995, CHEN NING YANG GREAT, P10