Holomorphic curves and integral points off divisors

被引:36
作者
Noguchi, J [1 ]
Winkelmann, J
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
[2] Math Inst, CH-4053 Basel, Switzerland
关键词
D O I
10.1007/s002090100327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the distributions of holomorphic curves and integral points off divisors. We will simultaneously prove an optimal dimension estimate from above of a subvariety W off a divisor D which contains a Zariski dense entire holomorphic curve, or a Zariski dense D-integral point set, provided that in the latter case everything is defined over a number field. Then, if the number of components of D is large, the estimate leads to the constancy of such a holomorphic curve or the Finiteness of such an integral point set. At the beginning, we extend logarithmic Bloch-Ochiai's Theorem to the Kahler case.
引用
收藏
页码:593 / 610
页数:18
相关论文
共 36 条
[1]  
[Anonymous], 1978, PUBL RES I MATH SCI
[2]  
[Anonymous], 1972, TOHOKU MATH J, DOI DOI 10.2748/TMJ/1178241480
[3]  
AX J, 1972, AM J MATH, V94, P1205
[4]   PICARD-TYPE THEOREMS FOR HOLOMORPHIC MAPPINGS [J].
BABETS, VA .
SIBERIAN MATHEMATICAL JOURNAL, 1984, 25 (02) :195-200
[5]   ON DEFORMATIONS OF KAHLER SPACES .1. [J].
BINGENER, J .
MATHEMATISCHE ZEITSCHRIFT, 1983, 182 (04) :505-535
[6]  
BLOCH A, 1926, J MATH PURE APPL, V5, P9
[7]  
DELIGNE P, 1971, PUBL MATH IHES, V40, P5
[8]  
Eremenko A., 1992, St. Petersburg Math. J., V3, P109
[9]   DIOPHANTINE APPROXIMATION ON ABELIAN-VARIETIES [J].
FALTINGS, G .
ANNALS OF MATHEMATICS, 1991, 133 (03) :549-576
[10]  
GREEN ML, 1977, P AM MATH SOC, V66, P109