Zero twist of Gaussian light in first-order optical systems

被引:1
作者
Bastiaans, MJ [1 ]
机构
[1] Tech Univ Eindhoven, Fac Elektrotech, NL-5600 MB Eindhoven, Netherlands
来源
18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST | 1999年 / 3749卷
关键词
D O I
10.1117/12.355036
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The propagation of Gaussian light through first-order optical systems is studied; in particular, the twist in the output (or input) plane is expressed in terms of the characteristics of the light in the other plane. Conditions are derived for which zero twist in the input plane corresponds to zero twist in the output plane, and vice verse. Three special cases for which zero twist is preserved, are described: (i) propagation between conjugated planes, (ii) adaptation of the signal to the system, and (iii) the case of symplectic Gaussian light.
引用
收藏
页码:112 / 113
页数:2
相关论文
共 8 条
[1]   ABCD LAW FOR PARTIALLY COHERENT GAUSSIAN LIGHT, PROPAGATING THROUGH 1ST-ORDER OPTICAL-SYSTEMS [J].
BASTIAANS, MJ .
OPTICAL AND QUANTUM ELECTRONICS, 1992, 24 (09) :S1011-S1019
[2]  
BASTIAANS MJ, 1991, OPTIK, V88, P163
[3]  
BASTIAANS MJ, 1993, P WORKSH LAS BEAM CH, P65
[4]  
Goodman J.W., 1996, Opt. Eng, V35, P1513, DOI DOI 10.1016/J.APSUSC.2017.08.033
[5]  
Luneburg R., 1944, MATH THEORY OPTICS
[7]   TWISTED GAUSSIAN SCHELL-MODEL BEAMS [J].
SIMON, R ;
MUKUNDA, N .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (01) :95-109
[8]   On the quantum correction for thermodynamic equilibrium [J].
Wigner, E .
PHYSICAL REVIEW, 1932, 40 (05) :0749-0759