Effects of acute and chronic administration of the melanocortin agonist MTII in mice with diet-induced obesity

被引:172
作者
Pierroz, DD [1 ]
Ziotopoulou, M [1 ]
Ungsunan, L [1 ]
Moschos, S [1 ]
Flier, JS [1 ]
Mantzoros, CS [1 ]
机构
[1] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Div Endocrinol 325, Boston, MA 02215 USA
关键词
D O I
10.2337/diabetes.51.5.1337
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
High-fat diet-induced obesity (DIO) in rodents is associated with hyperleptinemia and resistance to leptin, but the response to agents acting downstream of leptin receptors remains unknown. We assessed the response of mice with DIO to treatment with MTII, an alpha-melanocyte-stimulating hormone analog. MTII delivered four times daily by intraperitoneal injection to C57BL/6J mice produced a dose-responsive effect on food intake, body weight, leptin, corticosterone, insulin, and free fatty acids. In DIO mice, administration of MTII 100 mug q.i.d. i.p. markedly suppressed feeding during the first 4 days of treatment, with food intake returning to control levels at day 5. Progressive weight loss also occurred over the first 4 days, after which weight plateaued at a level below control. After 8 days of treatment, MTII-treated DIO mice had major suppression of both leptin and insulin levels. Central administration of MTII for 4 days (10 nmol/day) in DIO mice significantly suppressed food intake, induced weight loss, and increased energy expenditure. These results indicate that 1) MTH administration to DIO mice causes suppression of food intake and body weight loss, and decreased food intake is primarily responsible for weight loss; 2) peripheral MTII improves insulin resistance in DIO mice; 3) "tachyphylaxis" to the effect of chronic MTII treatment on food intake occurs; and 4) at least some of the effects of MTII are exerted centrally. In conclusion, treatment with a melanocortin agonist is a promising therapeutic approach to DIO and associated insulin resistance.
引用
收藏
页码:1337 / 1345
页数:9
相关论文
共 48 条
[1]   Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3-L1 cell line [J].
Boston, BA ;
Cone, RD .
ENDOCRINOLOGY, 1996, 137 (05) :2043-2050
[2]   Obesity is associated with a decreased leptin transport across the blood-brain barrier in rats [J].
Burguera, B ;
Couce, ME ;
Curran, GL ;
Jensen, MD ;
Lloyd, RV ;
Cleary, MP ;
Poduslo, JF .
DIABETES, 2000, 49 (07) :1219-1223
[3]   A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse [J].
Butler, AA ;
Kesterson, RA ;
Khong, K ;
Cullen, MJ ;
Pelleymounter, MA ;
Dekoning, J ;
Baetscher, M ;
Cone, RD .
ENDOCRINOLOGY, 2000, 141 (09) :3518-3521
[4]   Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass [J].
Chen, AS ;
Marsh, DJ ;
Trumbauer, ME ;
Frazier, EG ;
Guan, XM ;
Yu, H ;
Rosenblum, CI ;
Vongs, A ;
Feng, Y ;
Cao, LH ;
Metzger, JM ;
Strack, AM ;
Camacho, RE ;
Mellin, TN ;
Nunes, CN ;
Min, W ;
Fisher, J ;
Gopal-Truter, S ;
MacIntyre, DE ;
Chen, HY ;
Van der Ploeg, LHT .
NATURE GENETICS, 2000, 26 (01) :97-102
[5]   The central melanocortin system and energy homeostasis [J].
Cone, RD .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 1999, 10 (06) :211-216
[6]   Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity [J].
El-Haschimi, K ;
Pierroz, DD ;
Hileman, SM ;
Bjorbæk, C ;
Flier, JS .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (12) :1827-1832
[7]  
Fan T, 2000, ENDOCRINOLOGY, V141, P3072
[8]   Role of melanocortinergic neurons in feeding and the agouti obesity syndrome [J].
Fan, W ;
Boston, BA ;
Kesterson, RA ;
Hruby, VJ ;
Cone, RD .
NATURE, 1997, 385 (6612) :165-168
[9]   Primer - Energy homeostasis and body weight [J].
Flier, J ;
Maratos-Flier, E .
CURRENT BIOLOGY, 2000, 10 (06) :R215-R217
[10]   Integrated control of appetite and fat metabolism by the leptin-proopiomelanocortin pathway [J].
Forbes, S ;
Bui, S ;
Robinson, BR ;
Hochgeschwender, U ;
Brennan, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :4233-4237