Convergence of relaxation schemes for hyperbolic conservation laws with stiff source terms

被引:20
作者
Chalabi, A [1 ]
机构
[1] Univ Toulouse 3, CNRS, UMR MIP 5640, UFR MIG, F-31062 Toulouse, France
关键词
conservation laws; stiff source term; relaxation scheme; fully implicit scheme; semi-implicit scheme; TVD scheme; MUSCL method; entropy solution;
D O I
10.1090/S0025-5718-99-01089-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We focus in this study on the convergence of a class of relaxation numerical schemes for hyperbolic scalar conservation laws including stiff source terms. Following Jin and Xin, we use as approximation of the scalar conservation law, a semi-linear hyperbolic system with a second stiff source term. This allows us to avoid the use of a Riemann solver in the construction of the numerical schemes. The convergence of the approximate solution toward a weak solution is established in the cases of first and second order accurate MUSCL relaxed methods.
引用
收藏
页码:955 / 970
页数:16
相关论文
共 33 条
[1]  
Aregba-Driollet D., 1996, APPL ANAL, V61, P163
[2]  
Berkenbosch A. C., 1994, NUMERICAL WAVE SPEED
[3]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[4]   An error bound for the polygonal approximation of conservation laws with source terms [J].
Chalabi, A .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (08) :59-63
[5]   STABLE UPWIND SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
CHALABI, A .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1992, 12 (02) :217-241
[7]   HYPERBOLIC CONSERVATION-LAWS WITH STIFF RELAXATION TERMS AND ENTROPY [J].
CHEN, GQ ;
LEVERMORE, CD ;
LIU, TP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (06) :787-830
[8]   THEORETICAL AND NUMERICAL STRUCTURE FOR REACTING SHOCK-WAVES [J].
COLELLA, P ;
MAJDA, A ;
ROYTBURD, V .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (04) :1059-1080
[9]   Convergence of the relaxation approximation to a scalar nonlinear hyperbolic equation arising in chromatography [J].
Collet, JF ;
Rascle, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1996, 47 (03) :400-409
[10]   MONOTONE-DIFFERENCE APPROXIMATIONS FOR SCALAR CONSERVATION-LAWS [J].
CRANDALL, MG ;
MAJDA, A .
MATHEMATICS OF COMPUTATION, 1980, 34 (149) :1-21