Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes

被引:51
作者
Antunes, A [1 ]
Ramos, MJ [1 ]
机构
[1] Univ Porto, Fac Ciencias, Dept Quim, REQUIMTE,Grp Quim Teor & Computac, P-4169007 Oporto, Portugal
关键词
gene transfer; genome evolution; mitochondrial pseudogene; mutagenesis; Numt; teleosts;
D O I
10.1016/j.ygeno.2005.08.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nuclear inserted copies of mitochondrial origin (numts) vary widely among eukaryotes, with human and plant genomes harboring the largest repertoires. Numts were previously thought to be absent from fish species, but the recent release of three fish nuclear genome sequences provides the resource to obtain a more comprehensive insight into the extent of mtDNA transfer in fishes. From the sequence analyses of the genomes of Fugu rubripes, Tetraodon nigroviridis, and Danio rerio, we have identified 2, 5, and 10 recent numt integrations, respectively, which integrated into those genomes less than 0.6 million years (Myr) ago. Such results contradict the hypothesis of absence or rarity of numts in fishes, as (i) the ratio of numts to the total size of the nuclear genome in T nigroviridis was superior to the ratio observed in several higher vertebrate species (e.g., chicken, mouse, and rat), and only surpassed by humans, and (ii) the mtDNA coverage transferred to the nuclear genome of D. rerio is exceeded only by human and mouse, within the whole range of eukaryotic genomes surveyed for numts. Additionally, 335, 336, and 471 old numts (> 12.5 Myr) were detected in F rubripes, T nigroviridis, and D. rerio, respectively. Surprisingly, old numts are inserted preferentially into known or predicted genes, as inferred for recent numts in human. However, because in fish genomes such integrations are old, they are likely to represent evolutionary successes and they may be considered a potential important evolutionary mechanism for the enhancement of genomic coding regions. (c) 2005 Elsevier Inc, All rights reserved.
引用
收藏
页码:708 / 717
页数:10
相关论文
共 56 条
[1]   Punctuated evolution of mitochondrial gene content: High and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution [J].
Adams, KL ;
Qiu, YL ;
Stoutemyer, M ;
Palmer, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :9905-9912
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]   Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes [J].
Aparicio, S ;
Chapman, J ;
Stupka, E ;
Putnam, N ;
Chia, J ;
Dehal, P ;
Christoffels, A ;
Rash, S ;
Hoon, S ;
Smit, A ;
Gelpke, MDS ;
Roach, J ;
Oh, T ;
Ho, IY ;
Wong, M ;
Detter, C ;
Verhoef, F ;
Predki, P ;
Tay, A ;
Lucas, S ;
Richardson, P ;
Smith, SF ;
Clark, MS ;
Edwards, YJK ;
Doggett, N ;
Zharkikh, A ;
Tavtigian, SV ;
Pruss, D ;
Barnstead, M ;
Evans, C ;
Baden, H ;
Powell, J ;
Glusman, G ;
Rowen, L ;
Hood, L ;
Tan, YH ;
Elgar, G ;
Hawkins, T ;
Venkatesh, B ;
Rokhsar, D ;
Brenner, S .
SCIENCE, 2002, 297 (5585) :1301-1310
[5]   Mitochondrial pseudogenes: evolution's misplaced witnesses [J].
Bensasson, D ;
Zhang, DX ;
Hartl, DL ;
Hewitt, GM .
TRENDS IN ECOLOGY & EVOLUTION, 2001, 16 (06) :314-321
[6]   Rates of DNA duplication and mitochondrial DNA insertion in the human genome [J].
Bensasson, D ;
Feldman, MW ;
Petrov, DA .
JOURNAL OF MOLECULAR EVOLUTION, 2003, 57 (03) :343-354
[7]  
Biemont C, 1997, GENETICS, V147, P1997
[8]   Organellar genes - why do they end up in the nucleus? [J].
Blanchard, JL ;
Lynch, M .
TRENDS IN GENETICS, 2000, 16 (07) :315-320
[9]   Characterization of two novel splice site mutations in human factor VII gene causing severe plasma factor VII deficiency and bleeding diathesis [J].
Borensztajn, K ;
Chafa, O ;
Alhenc-Gelas, M ;
Salha, S ;
Reghis, A ;
Fischer, AM ;
Tapon-Bretaudière, J .
BRITISH JOURNAL OF HAEMATOLOGY, 2002, 117 (01) :168-171
[10]  
Brainerd EL, 2001, EVOLUTION, V55, P2363