Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process

被引:200
作者
Hao, XD
Heijnen, JJ
van Loosdrecht, MCM
机构
[1] Delft Univ Technol, Dept Chem Engn, Kluyver Lab Biotechnol, NL-2628 BC Delft, Netherlands
[2] Shanxi Univ Finance & Econ, Res Ctr Ecol Econ & Environm Technol, Taiyuan 030006, Shanxi, Peoples R China
关键词
mathematical model; biofilm; partial nitrification; ANAMMOX; ammonium removal; CANON;
D O I
10.1002/bit.10105
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A mathematical model for nitrification and anaerobic ammonium oxidation (ANAMMOX) processes in a single biofilm reactor (CANON) was developed. This model describes completely autotrophic conversion of ammonium to dinitrogen gas. Aerobic ammonium and nitrite oxidation were modeled together with ANAMMOX. The sensitivity of kinetic constants and biofilm and process parameters to the process performance was evaluated, and the total effluent concentrations were, in general, found to be insensitive to affinity constants. Increasing the amount of biomass by either increasing biofilm thickness and density or decreasing porosity had no significant influence on the total effluent concentrations, provided that a minimum total biomass was present in the reactor. The ANAMMOX process always occurred in the depth of the biofilm provided that the oxygen concentration was limiting. The optimal dissolved oxygen concentration level at which the maximum nitrogen removal occurred is related to a certain ammonium surface load on the biofilm. An ammonium surface load of 2 g N/m(2) . d, associated with a dissolved oxygen concentration level of 1.3 g O-2/m(3) in the bulk liquid and with a minimum biofilm depth of 1 mm seems a proper design condition for the one-stage ammonium removal process. Under this condition, the ammonium removal efficiency is 94% (82% for the total nitrogen removal efficiency) (30 degreesC). Better ammonium removal could be achieved with an increase in the dissolved oxygen concentration level, but this would strongly limit the ANAMMOX process and decrease total nitrogen removal. It can be concluded that a one-stage process is probably not optimal if a good nitrogen effluent is required. A two-stage process like the combined SHARON and ANAMMOX process would be advised for complete nitrogen removal. (C) 2002 John Wiley Sons, Inc.
引用
收藏
页码:266 / 277
页数:12
相关论文
共 28 条
[1]  
BROUWER M, 1996, 9601 STOWA
[2]  
DIJKMAN H, 1999, Patent No. 9900446
[3]  
Garrido JM, 1997, BIOTECHNOL BIOENG, V53, P168
[4]   Activated Sludge Model No. 3 [J].
Gujer, W ;
Henze, M ;
Mino, T ;
van Loosdrecht, M .
WATER SCIENCE AND TECHNOLOGY, 1999, 39 (01) :183-193
[5]   Model based design of a novel process for nitrogen removal from concentrated flows [J].
Hellinga, C ;
Van Loosdrecht, MCM ;
Heijnen, JJ .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 1999, 5 (04) :351-371
[6]   Simultaneous nitrification/denitrification in an aerobic biofilm system [J].
Helmer, C ;
Kunst, S .
WATER SCIENCE AND TECHNOLOGY, 1998, 37 (4-5) :183-187
[7]  
Helmer C, 1999, WATER SCI TECHNOL, V39, P13, DOI 10.2166/wst.1999.0317
[8]   Activated Sludge Model No.2d, ASM2d [J].
Henze, M ;
Gujer, W ;
Mino, T ;
Matsuo, T ;
Wentzel, MC ;
Marais, GVR ;
Van Loosdrecht, MCM .
WATER SCIENCE AND TECHNOLOGY, 1999, 39 (01) :165-182
[9]   Aerobic deammonification: A new experience in the treatment of wastewaters [J].
Hippen, A ;
Rosenwinkel, KH ;
Baumgarten, G ;
Seyfried, CF .
WATER SCIENCE AND TECHNOLOGY, 1997, 35 (10) :111-120
[10]   The anaerobic oxidation of ammonium [J].
Jetten, MSM ;
Strous, M ;
van de Pas-Schoonen, KT ;
Schalk, J ;
van Dongen, UGJM ;
van de Graaf, AA ;
Logemann, S ;
Muyzer, G ;
van Loosdrecht, MCM ;
Kuenen, JG .
FEMS MICROBIOLOGY REVIEWS, 1998, 22 (05) :421-437