Image modeling with linear scale-invariant systems

被引:9
作者
Rao, RM [1 ]
Zhao, W [1 ]
机构
[1] Rochester Inst Technol, Dept Elect Engn Imaging Sci, Rochester, NY 14623 USA
来源
WAVELET APPLICATIONS VI | 1999年 / 3723卷
关键词
scale-invariance; texture-modeling; wavelets; fractals;
D O I
10.1117/12.342951
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Scaling or dilation is an integral part of the wavelet transform. The wavelet transform possesses certain scale-invariance properties. This paper explores scale invariance further in the construction of linear, two-dimensional, discrete-space, scale-invariant systems. Through a new definition of discrete-space, continuous-parameter dilation operation, deterministic and stochastic self-similarity in images is studied. It is shown that the dilation operation leads to the construction of linear scale-invariant systems for digital images. The paper provides methods for constructing such systems and shows application to the modeling of texture images.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 36 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1992, Multirate Systems and Filter Banks
[3]  
[Anonymous], WATER RESOURCES RES
[4]  
[Anonymous], 1991, RANDOM VARIABLES STO
[5]  
Apostol T M, 1957, MATH ANAL
[6]  
ARFKEN G, 1985, MATH METHODS PHYSICI
[7]   A STATISTICAL MODEL OF FLICKER NOISE [J].
BARNES, JA ;
ALLAN, DW .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1966, 54 (02) :176-&
[8]   SIGNAL-DETECTION IN FRACTIONAL GAUSSIAN-NOISE [J].
BARTON, RJ ;
POOR, HV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :943-959
[9]  
Feder J., 1988, FRACTALS
[10]   ON THE SPECTRUM OF FRACTIONAL BROWNIAN MOTIONS [J].
FLANDRIN, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) :197-199