Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters

被引:170
作者
Lu, JQ [1 ]
Cao, JD [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2089207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the adaptive complete synchronization of chaotic and hyperchaotic systems with fully unknown parameters. In practical situations, some systems' parameters cannot be exactly known a priori, and the uncertainties often affect the stability of the process of synchronization of the chaotic oscillators. An adaptive scheme is proposed to compensate for the effects of parameters' uncertainty based on the structure of chaotic systems in this paper. Based on the Lyapunov stability theorem, an adaptive controller and a parameters update law can be designed for the synchronization of chaotic and hyperchaotic systems. The drive and response systems can be nonidentical, even with different order. Three illustrative examples are given to demonstrate the validity of this technique, and numerical simulations are also given to show the effectiveness of the proposed chaos synchronization method. In addition, this synchronization scheme is quite robust against the effect of noise. (C) 2005 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]  
[Anonymous], 1961, STABILITY LIAPUNOVS
[3]   Synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1997, 8 (01) :51-58
[4]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[5]   Characterization of intermittent lag synchronization [J].
Boccaletti, S ;
Valladares, DL .
PHYSICAL REVIEW E, 2000, 62 (05) :7497-7500
[6]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[7]   Stability analysis for the synchronization of chaotic systems with different order: application to secure communications [J].
Bowong, S .
PHYSICS LETTERS A, 2004, 326 (1-2) :102-113
[8]   Synchronization criteria of Lur'e systems with time-delay feedback control [J].
Cao, JD ;
Li, HX ;
Ho, DWC .
CHAOS SOLITONS & FRACTALS, 2005, 23 (04) :1285-1298
[9]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[10]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466