Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: A patch clamp analysis in gene-targeted mice

被引:122
作者
Grosmaitre, X
Vassalli, A
Mombaerts, P
Shepherd, GM
Ma, MH [1 ]
机构
[1] Univ Penn, Sch Med, Dept Neurosci, Philadelphia, PA 19104 USA
[2] Rockefeller Univ, New York, NY 10021 USA
[3] Yale Univ, Sch Med, Dept Neurobiol, New Haven, CT 06511 USA
关键词
olfactory receptor; olfactory epithelium; signal transduction; lyral;
D O I
10.1073/pnas.0508491103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A glomerulus in the mammalian olfactory bulb receives axonal inputs from olfactory sensory neurons (OSNs) that express the same odorant receptor (OR). Glomeruli are generally thought to represent functional units of olfactory coding, but there are no data on the electrophysiological properties of OSNs that express the same endogenous OR. Here, using patch clamp recordings in an intact epithelial preparation, we directly measured the transduction currents and receptor potentials from the dendritic knobs of mouse OSNs that express the odorant receptor MOR23 along with the green fluorescent protein. All of the 53 cells examined responded to lyral, a known ligand for MOR23. There were profound differences in response kinetics, particularly in the deactivation phase. The cells were very sensitive to lyral, with some cells responding to as little as 10 nM. The dynamic range was unexpectedly broad, with threshold and saturation in individual cells often covering three log units of lyral concentration. The potential causes and biological significance of this cellular heterogeneity are discussed. Patch clamp recording from OSNs that express a defined OR provides a powerful approach to investigate the sensory inputs to individual glomeruli.
引用
收藏
页码:1970 / 1975
页数:6
相关论文
共 46 条
[1]  
BOEKHOFF I, 1994, J BIOL CHEM, V269, P37
[2]   TERMINATION OF 2ND-MESSENGER SIGNALING IN OLFACTION [J].
BOEKHOFF, I ;
BREER, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (02) :471-474
[3]   RAPID ACTIVATION OF ALTERNATIVE 2ND MESSENGER PATHWAYS IN OLFACTORY CILIA FROM RATS BY DIFFERENT ODORANTS [J].
BOEKHOFF, I ;
TAREILUS, E ;
STROTMANN, J ;
BREER, H .
EMBO JOURNAL, 1990, 9 (08) :2453-2458
[4]  
BORISY FF, 1992, J NEUROSCI, V12, P915
[5]   In vivo imaging of neuronal activity - Neurotechnique by targeted expression of a genetically encoded probe in the mouse [J].
Bozza, T ;
McGann, JP ;
Mombaerts, P ;
Wachowiak, M .
NEURON, 2004, 42 (01) :9-21
[6]   Odorant receptor expression defines functional units in the mouse olfactory system [J].
Bozza, T ;
Feinstein, P ;
Zheng, C ;
Mombaerts, P .
JOURNAL OF NEUROSCIENCE, 2002, 22 (08) :3033-3043
[7]   A NOVEL MULTIGENE FAMILY MAY ENCODE ODORANT RECEPTORS - A MOLECULAR-BASIS FOR ODOR RECOGNITION [J].
BUCK, L ;
AXEL, R .
CELL, 1991, 65 (01) :175-187
[8]   Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP3-odors" [J].
Chen, S ;
Lane, AP ;
Bock, R ;
Leinders-Zufall, T ;
Zufall, F .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (01) :575-580
[9]   Axon guidance of mouse olfactory sensory neurons by odorant receptors and the β2 adrenergic receptor [J].
Feinstein, P ;
Bozza, T ;
Rodriguez, I ;
Vassalli, A ;
Mombaerts, P .
CELL, 2004, 117 (06) :833-846
[10]   ODOR-INDUCED MEMBRANE CURRENTS IN VERTEBRATE-OLFACTORY RECEPTOR NEURONS [J].
FIRESTEIN, S ;
WERBLIN, F .
SCIENCE, 1989, 244 (4900) :79-82