Functional diversity of Xenopus lymphoid enhancer factor/T-cell factor transcription factors relies on combinations of activating and repressing elements

被引:53
作者
Gradl, D
König, A
Wedlich, D
机构
[1] Univ Karlsruhe, Inst Zool 2, D-76128 Karlsruhe, Germany
[2] Univ Ulm, Biochem Abt, D-89081 Ulm, Germany
关键词
D O I
10.1074/jbc.M107055200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lymphoid enhancer factor/T-cell factor (LEF/TCF) high mobility group box transcription factors are the nuclear transducers of the Wnt/beta-catenin signaling cascade. In Xenopus, three members of the LEF/TCF family, XLEF-1, XTCF-3, and XTCF-4, with distinct but partially overlapping expression patterns have been identified. The individual Xenopus LEF/TCF family members differ extremely in their properties of target gene regulation. We observed that in contrast to LEF-1, neither XTCF-3 nor XTCF-4 can induce secondary axis formation upon ventral overexpression in Xenopus embryos. To identify functional motifs within the LEF/TCF transcription factors responsible for target gene activation or repression, we created various mutants and a set of XLEF-1/XTCF-3 chimeras. In overexpression studies, we asked whether these constructs can mimic an activated Wnt/beta-catenin pathway and lead to the formation of a secondary body axis. In addition, we examined their capacity to rescue a loss-of-function phenotype given by dominant negative LEF-1 expression. We further analyzed their ability to directly activate target genes in reporter gene assays using the LEF/TCF target promoters, siamois and fibronectin. We found that a region homologous to exon IVa of human TCF-1 is an activating element. This is flanked by two small repressing motifs, LVPQ and SXXSS. Our findings implicate that the motifs identified here play an essential role in determining cell type-specific activity of LEF/TCF transcription factors.
引用
收藏
页码:14159 / 14171
页数:13
相关论文
共 51 条
[1]   Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β [J].
Behrens, J ;
Jerchow, BA ;
Würtele, M ;
Grimm, J ;
Asbrand, C ;
Wirtz, R ;
Kühl, M ;
Wedlich, D ;
Birchmeier, W .
SCIENCE, 1998, 280 (5363) :596-599
[2]   Functional interaction of beta-catenin with the transcription factor LEF-1 [J].
Behrens, J ;
vonKries, JP ;
Kuhl, M ;
Bruhn, L ;
Wedlich, D ;
Grosschedl, R ;
Birchmeier, W .
NATURE, 1996, 382 (6592) :638-642
[3]   A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus [J].
Brannon, M ;
Gomperts, M ;
Sumoy, L ;
Moon, RT ;
Kimelman, D .
GENES & DEVELOPMENT, 1997, 11 (18) :2359-2370
[4]  
Brannon M, 1999, DEVELOPMENT, V126, P3159
[5]  
Brault V, 2001, DEVELOPMENT, V128, P1253
[6]   ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCR alpha enhancer function [J].
Bruhn, L ;
Munnerlyn, A ;
Grosschedl, R .
GENES & DEVELOPMENT, 1997, 11 (05) :640-653
[7]   THE HLEF/TCF-1-ALPHA HMG PROTEIN CONTAINS A CONTEXT-DEPENDENT TRANSCRIPTIONAL ACTIVATION DOMAIN THAT INDUCES THE TCR-ALPHA ENHANCER IN T-CELLS [J].
CARLSSON, P ;
WATERMAN, ML ;
JONES, KA .
GENES & DEVELOPMENT, 1993, 7 (12A) :2418-2430
[8]   Neural crest induction by Xwnt7B in Xenopus [J].
Chang, CB ;
Hemmati-Brivanlou, A .
DEVELOPMENTAL BIOLOGY, 1998, 194 (01) :129-134
[9]   Control of neural crest cell fate by the Wnt signalling pathway [J].
Dorsky, RI ;
Moon, RT ;
Raible, DW .
NATURE, 1998, 396 (6709) :370-373
[10]  
Duval A, 2000, CANCER RES, V60, P3872