Raman spectroscopic study of the selenite mineral mandarinoite Fe2Se3O9•6H2O

被引:32
作者
Frost, Ray L. [1 ]
Keeffe, Eloise C. [1 ]
机构
[1] Queensland Univ Technol, Inorgan Mat Res Program, Sch Phys & Chem Sci, Brisbane, Qld 4001, Australia
关键词
selenite; Raman spectroscopy; mandarinoite; schmiederite; chalcomenite; clinochalcomenite; CRYSTALLIZATION FIELDS; MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE; HYDROGEN-BONDS; URANYL; PHOSPHATE; SPECTRA; IR;
D O I
10.1002/jrs.2070
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Selenites and tellurites may be subdivided according to formula and structure. There are five groups, based upon the formulae (a) A(XO3), (b) A(XO3 center dot) xH(2)O, (c) A(2)(XO3)(3)center dot xH(2)O, (d) A(2)(X2O5) and (e) A(X3O8). Of the selenites, molybdomenite is an example of type (a); chalcomenite, clinochalcomenite, cobaltomenite and ahlfeldite are minerals of type (b); mandarinoite Fe2Se3O9 center dot 6H(2)O is an example of type (c). Raman spectroscopy has been used to characterise the mineral mandarinoite. The intense, sharp band at 814 cm(-1) is assigned to the symmetric stretching (Se3O9)(6-) units. Three Raman bands observed at 695, 723 and 744 cm(-1) are attributed to the nu(3) (Se3O9)(6-) anti-symmetric stretching modes. Raman bands at 355, 398 and 474 cm(-1) are assigned to the nu(4) and nu(2) bending modes. Raman bands are observed at 2796, 2926, 3046, 3189 and 3507 cm(-1) and are assigned to OH stretching vibrations. The observation of multiple OH stretching vibrations suggests the non-equivalence of water in the mandarinoite structure. The use of the Libowitzky empirical function provides hydrogen bond distances of 2.633(9) angstrom (2926 cm(-1)), 2.660(0) angstrom (3046 cm(-1)), 2.700(0) angstrom (3189 cm(-1)) and 2.905(3) angstrom (3507 cm(-1)). The sharp, intense band at 3507 cm(-1) may be due to hydroxyl units. It is probable that some of the selenite units have been replaced by hydroxyl units. Copyright (c) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:42 / 45
页数:4
相关论文
共 50 条
[1]  
ANTHONY JW, 2000, MINERAL DATA, V4
[2]  
Bäumer U, 1999, Z ANORG ALLG CHEM, V625, P395, DOI 10.1002/(SICI)1521-3749(199903)625:3<395::AID-ZAAC395>3.0.CO
[3]  
2-L
[4]  
DANA JD, DANAS MANUAL MINERAL
[5]  
Dunn PJ, 1978, CAN MINERAL, V16, P605
[6]   VERY STRONG HYDROGEN-BONDING [J].
EMSLEY, J .
CHEMICAL SOCIETY REVIEWS, 1980, 9 (01) :91-124
[7]  
Farmer V.C., 1974, Mineralogical Society Monograph 4: The Infrared Spectra of Minerals, 1974
[8]   Raman spectroscopy of halogen-containing carbonates [J].
Frost, Ray L. ;
Dickfos, Marilla J. .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (11) :1516-1522
[9]   A Raman spectroscopic study of the uranyl carbonate rutherfordine [J].
Frost, Ray L. ;
Cejkal, Jiri .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (11) :1488-1493
[10]   Raman spectroscopic and SEM analysis of sodium-zippeite [J].
Frost, Ray L. ;
Cejka, Jiri ;
Ayokol, Godwin A. ;
Weier, Matt L. .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (10) :1311-1319