Fibroblast growth factor-8 protects cultured rat hippocampal neurons from oxidative insult

被引:22
作者
Mark, RJ [1 ]
Fuson, KS [1 ]
Keane-Lazar, K [1 ]
May, PC [1 ]
机构
[1] Eli Lilly & Co, Neurosci Res Div, Indianapolis, IN 46285 USA
关键词
FGF; SK-N-MC; oxidation; hippocampal neuron;
D O I
10.1016/S0006-8993(99)01390-6
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Basic fibroblast growth factor (bFGF) has been reported to have neuroprotective properties following excitotoxic, metabolic, and oxidative insults. We report here that another FGF family member, FGF-8 is able to protect rat hippocampal cultures from oxidative stress. The b isoform of FGF-8 protected hippocampal cultures from hydrogen peroxide with an EC50 of approximately 25 ng/ml. In a time course study, using pre-, co-, post-treatment paradigms, we report that bFGF and FGF-8b were neuroprotective when added as a pre-treatment, co-treatment, and even at 2 h post-insult. Using neuronal enriched cultures, we demonstrate that bFGF and FGF-8b neuroprotection partially results from a direct action of the growth factors on neurons. The direct action on neurons may work in concert with normal and FGF-stimulated glial secretion products to give the full FGF protective effect. FGF-8b showed maximal protection at 50 ng/ml, whereas bFGF showed maximal protection at 10 ng/ml. Despite requiring higher concentrations to elicit protection, FGF-8b is able to attain levels of protection equivalent to that of bFGF (attenuation of 75-80% of hydrogen peroxide induced death). We also report that bFGF and FGF-8b are able to protect the human neuroblastoma cell line, SK-N-MC, from peroxide-induced LDH release by 50%. From these studies, we conclude that FGF-sb is another member of the FGF family which may show in vivo efficacy for the treatment of oxidative insults, such as stroke. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:88 / 93
页数:6
相关论文
共 34 条
[1]   BASIC FIBROBLAST GROWTH-FACTOR PREVENTS DEATH OF LESIONED CHOLINERGIC NEURONS INVIVO [J].
ANDERSON, KJ ;
DAM, D ;
LEE, S ;
COTMAN, CW .
NATURE, 1988, 332 (6162) :360-361
[2]   SERUM-FREE B27/NEUROBASAL MEDIUM SUPPORTS DIFFERENTIATED GROWTH OF NEURONS FROM THE STRIATUM, SUBSTANTIA-NIGRA, SEPTUM, CEREBRAL-CORTEX, CEREBELLUM, AND DENTATE GYRUS [J].
BREWER, GJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 42 (05) :674-683
[3]  
CHENG B, 1995, J NEUROCHEM, V65, P2525
[4]   NGF AND BFGF PROTECT RAT HIPPOCAMPAL AND HUMAN CORTICAL-NEURONS AGAINST HYPOGLYCEMIC DAMAGE BY STABILIZING CALCIUM HOMEOSTASIS [J].
CHENG, B ;
MATTSON, MP .
NEURON, 1991, 7 (06) :1031-1041
[5]   THE ANTIOXIDANT LY231617 REDUCES GLOBAL ISCHEMIC NEURONAL INJURY IN RATS [J].
CLEMENS, JA ;
SAUNDERS, RD ;
HO, PP ;
PHEBUS, LA ;
PANETTA, JA .
STROKE, 1993, 24 (05) :716-722
[6]   OXIDATIVE STRESS, GLUTAMATE, AND NEURODEGENERATIVE DISORDERS [J].
COYLE, JT ;
PUTTFARCKEN, P .
SCIENCE, 1993, 262 (5134) :689-695
[7]  
CROSSLEY PH, 1995, DEVELOPMENT, V121, P439
[8]  
Desagher S, 1996, J NEUROSCI, V16, P2553
[9]   CHEMISTRY AND BIOCHEMISTRY OF 4-HYDROXYNONENAL, MALONALDEHYDE AND RELATED ALDEHYDES [J].
ESTERBAUER, H ;
SCHAUR, RJ ;
ZOLLNER, H .
FREE RADICAL BIOLOGY AND MEDICINE, 1991, 11 (01) :81-128
[10]   INCREASED BASIC FIBROBLAST GROWTH-FACTOR (BFGF) IMMUNOREACTIVITY AT THE SITE OF FOCAL BRAIN WOUNDS [J].
FINKLESTEIN, SP ;
APOSTOLIDES, PJ ;
CADAY, CG ;
PROSSER, J ;
PHILIPS, MF ;
KLAGSBRUN, M .
BRAIN RESEARCH, 1988, 460 (02) :253-259